FFmpeg  4.4.4
snowenc.c
Go to the documentation of this file.
1 /*
2  * Copyright (C) 2004 Michael Niedermayer <michaelni@gmx.at>
3  *
4  * This file is part of FFmpeg.
5  *
6  * FFmpeg is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU Lesser General Public
8  * License as published by the Free Software Foundation; either
9  * version 2.1 of the License, or (at your option) any later version.
10  *
11  * FFmpeg is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14  * Lesser General Public License for more details.
15  *
16  * You should have received a copy of the GNU Lesser General Public
17  * License along with FFmpeg; if not, write to the Free Software
18  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
19  */
20 
21 #include "libavutil/intmath.h"
22 #include "libavutil/libm.h"
23 #include "libavutil/log.h"
24 #include "libavutil/opt.h"
25 #include "libavutil/pixdesc.h"
26 #include "avcodec.h"
27 #include "internal.h"
28 #include "packet_internal.h"
29 #include "snow_dwt.h"
30 #include "snow.h"
31 
32 #include "rangecoder.h"
33 #include "mathops.h"
34 
35 #include "mpegvideo.h"
36 #include "h263.h"
37 
39 {
40  SnowContext *s = avctx->priv_data;
41  int plane_index, ret;
42  int i;
43 
44 #if FF_API_PRIVATE_OPT
46  if (avctx->prediction_method)
47  s->pred = avctx->prediction_method;
49 #endif
50 
51  if(s->pred == DWT_97
52  && (avctx->flags & AV_CODEC_FLAG_QSCALE)
53  && avctx->global_quality == 0){
54  av_log(avctx, AV_LOG_ERROR, "The 9/7 wavelet is incompatible with lossless mode.\n");
55  return AVERROR(EINVAL);
56  }
57 
58  s->spatial_decomposition_type= s->pred; //FIXME add decorrelator type r transform_type
59 
60  s->mv_scale = (avctx->flags & AV_CODEC_FLAG_QPEL) ? 2 : 4;
61  s->block_max_depth= (avctx->flags & AV_CODEC_FLAG_4MV ) ? 1 : 0;
62 
63  for(plane_index=0; plane_index<3; plane_index++){
64  s->plane[plane_index].diag_mc= 1;
65  s->plane[plane_index].htaps= 6;
66  s->plane[plane_index].hcoeff[0]= 40;
67  s->plane[plane_index].hcoeff[1]= -10;
68  s->plane[plane_index].hcoeff[2]= 2;
69  s->plane[plane_index].fast_mc= 1;
70  }
71 
72  if ((ret = ff_snow_common_init(avctx)) < 0) {
73  return ret;
74  }
75  ff_mpegvideoencdsp_init(&s->mpvencdsp, avctx);
76 
78 
79  s->version=0;
80 
81  s->m.avctx = avctx;
82  s->m.bit_rate= avctx->bit_rate;
83  s->m.lmin = avctx->mb_lmin;
84  s->m.lmax = avctx->mb_lmax;
85  s->m.mb_num = (avctx->width * avctx->height + 255) / 256; // For ratecontrol
86 
87  s->m.me.temp =
88  s->m.me.scratchpad= av_mallocz_array((avctx->width+64), 2*16*2*sizeof(uint8_t));
89  s->m.me.map = av_mallocz(ME_MAP_SIZE*sizeof(uint32_t));
90  s->m.me.score_map = av_mallocz(ME_MAP_SIZE*sizeof(uint32_t));
91  s->m.sc.obmc_scratchpad= av_mallocz(MB_SIZE*MB_SIZE*12*sizeof(uint32_t));
92  if (!s->m.me.scratchpad || !s->m.me.map || !s->m.me.score_map || !s->m.sc.obmc_scratchpad)
93  return AVERROR(ENOMEM);
94 
95  ff_h263_encode_init(&s->m); //mv_penalty
96 
97  s->max_ref_frames = av_clip(avctx->refs, 1, MAX_REF_FRAMES);
98 
99  if(avctx->flags&AV_CODEC_FLAG_PASS1){
100  if(!avctx->stats_out)
101  avctx->stats_out = av_mallocz(256);
102 
103  if (!avctx->stats_out)
104  return AVERROR(ENOMEM);
105  }
106  if((avctx->flags&AV_CODEC_FLAG_PASS2) || !(avctx->flags&AV_CODEC_FLAG_QSCALE)){
107  ret = ff_rate_control_init(&s->m);
108  if(ret < 0)
109  return ret;
110  }
111  s->pass1_rc= !(avctx->flags & (AV_CODEC_FLAG_QSCALE|AV_CODEC_FLAG_PASS2));
112 
113  switch(avctx->pix_fmt){
114  case AV_PIX_FMT_YUV444P:
115 // case AV_PIX_FMT_YUV422P:
116  case AV_PIX_FMT_YUV420P:
117 // case AV_PIX_FMT_YUV411P:
118  case AV_PIX_FMT_YUV410P:
119  s->nb_planes = 3;
120  s->colorspace_type= 0;
121  break;
122  case AV_PIX_FMT_GRAY8:
123  s->nb_planes = 1;
124  s->colorspace_type = 1;
125  break;
126 /* case AV_PIX_FMT_RGB32:
127  s->colorspace= 1;
128  break;*/
129  default:
130  av_log(avctx, AV_LOG_ERROR, "pixel format not supported\n");
131  return AVERROR_PATCHWELCOME;
132  }
133 
134  ret = av_pix_fmt_get_chroma_sub_sample(avctx->pix_fmt, &s->chroma_h_shift,
135  &s->chroma_v_shift);
136  if (ret) {
137  av_log(avctx, AV_LOG_ERROR, "pixel format invalid or unknown\n");
138  return ret;
139  }
140 
141  ff_set_cmp(&s->mecc, s->mecc.me_cmp, s->avctx->me_cmp);
142  ff_set_cmp(&s->mecc, s->mecc.me_sub_cmp, s->avctx->me_sub_cmp);
143 
144  s->input_picture = av_frame_alloc();
145  if (!s->input_picture)
146  return AVERROR(ENOMEM);
147 
148  if ((ret = ff_snow_get_buffer(s, s->input_picture)) < 0)
149  return ret;
150 
151  if(s->motion_est == FF_ME_ITER){
152  int size= s->b_width * s->b_height << 2*s->block_max_depth;
153  for(i=0; i<s->max_ref_frames; i++){
154  s->ref_mvs[i]= av_mallocz_array(size, sizeof(int16_t[2]));
155  s->ref_scores[i]= av_mallocz_array(size, sizeof(uint32_t));
156  if (!s->ref_mvs[i] || !s->ref_scores[i])
157  return AVERROR(ENOMEM);
158  }
159  }
160 
161  return 0;
162 }
163 
164 //near copy & paste from dsputil, FIXME
165 static int pix_sum(uint8_t * pix, int line_size, int w, int h)
166 {
167  int s, i, j;
168 
169  s = 0;
170  for (i = 0; i < h; i++) {
171  for (j = 0; j < w; j++) {
172  s += pix[0];
173  pix ++;
174  }
175  pix += line_size - w;
176  }
177  return s;
178 }
179 
180 //near copy & paste from dsputil, FIXME
181 static int pix_norm1(uint8_t * pix, int line_size, int w)
182 {
183  int s, i, j;
184  const uint32_t *sq = ff_square_tab + 256;
185 
186  s = 0;
187  for (i = 0; i < w; i++) {
188  for (j = 0; j < w; j ++) {
189  s += sq[pix[0]];
190  pix ++;
191  }
192  pix += line_size - w;
193  }
194  return s;
195 }
196 
197 static inline int get_penalty_factor(int lambda, int lambda2, int type){
198  switch(type&0xFF){
199  default:
200  case FF_CMP_SAD:
201  return lambda>>FF_LAMBDA_SHIFT;
202  case FF_CMP_DCT:
203  return (3*lambda)>>(FF_LAMBDA_SHIFT+1);
204  case FF_CMP_W53:
205  return (4*lambda)>>(FF_LAMBDA_SHIFT);
206  case FF_CMP_W97:
207  return (2*lambda)>>(FF_LAMBDA_SHIFT);
208  case FF_CMP_SATD:
209  case FF_CMP_DCT264:
210  return (2*lambda)>>FF_LAMBDA_SHIFT;
211  case FF_CMP_RD:
212  case FF_CMP_PSNR:
213  case FF_CMP_SSE:
214  case FF_CMP_NSSE:
215  return lambda2>>FF_LAMBDA_SHIFT;
216  case FF_CMP_BIT:
217  return 1;
218  }
219 }
220 
221 //FIXME copy&paste
222 #define P_LEFT P[1]
223 #define P_TOP P[2]
224 #define P_TOPRIGHT P[3]
225 #define P_MEDIAN P[4]
226 #define P_MV1 P[9]
227 #define FLAG_QPEL 1 //must be 1
228 
229 static int encode_q_branch(SnowContext *s, int level, int x, int y){
230  uint8_t p_buffer[1024];
231  uint8_t i_buffer[1024];
232  uint8_t p_state[sizeof(s->block_state)];
233  uint8_t i_state[sizeof(s->block_state)];
234  RangeCoder pc, ic;
235  uint8_t *pbbak= s->c.bytestream;
236  uint8_t *pbbak_start= s->c.bytestream_start;
237  int score, score2, iscore, i_len, p_len, block_s, sum, base_bits;
238  const int w= s->b_width << s->block_max_depth;
239  const int h= s->b_height << s->block_max_depth;
240  const int rem_depth= s->block_max_depth - level;
241  const int index= (x + y*w) << rem_depth;
242  const int block_w= 1<<(LOG2_MB_SIZE - level);
243  int trx= (x+1)<<rem_depth;
244  int try= (y+1)<<rem_depth;
245  const BlockNode *left = x ? &s->block[index-1] : &null_block;
246  const BlockNode *top = y ? &s->block[index-w] : &null_block;
247  const BlockNode *right = trx<w ? &s->block[index+1] : &null_block;
248  const BlockNode *bottom= try<h ? &s->block[index+w] : &null_block;
249  const BlockNode *tl = y && x ? &s->block[index-w-1] : left;
250  const BlockNode *tr = y && trx<w && ((x&1)==0 || level==0) ? &s->block[index-w+(1<<rem_depth)] : tl; //FIXME use lt
251  int pl = left->color[0];
252  int pcb= left->color[1];
253  int pcr= left->color[2];
254  int pmx, pmy;
255  int mx=0, my=0;
256  int l,cr,cb;
257  const int stride= s->current_picture->linesize[0];
258  const int uvstride= s->current_picture->linesize[1];
259  uint8_t *current_data[3]= { s->input_picture->data[0] + (x + y* stride)*block_w,
260  s->input_picture->data[1] + ((x*block_w)>>s->chroma_h_shift) + ((y*uvstride*block_w)>>s->chroma_v_shift),
261  s->input_picture->data[2] + ((x*block_w)>>s->chroma_h_shift) + ((y*uvstride*block_w)>>s->chroma_v_shift)};
262  int P[10][2];
263  int16_t last_mv[3][2];
264  int qpel= !!(s->avctx->flags & AV_CODEC_FLAG_QPEL); //unused
265  const int shift= 1+qpel;
266  MotionEstContext *c= &s->m.me;
267  int ref_context= av_log2(2*left->ref) + av_log2(2*top->ref);
268  int mx_context= av_log2(2*FFABS(left->mx - top->mx));
269  int my_context= av_log2(2*FFABS(left->my - top->my));
270  int s_context= 2*left->level + 2*top->level + tl->level + tr->level;
271  int ref, best_ref, ref_score, ref_mx, ref_my;
272 
273  av_assert0(sizeof(s->block_state) >= 256);
274  if(s->keyframe){
275  set_blocks(s, level, x, y, pl, pcb, pcr, 0, 0, 0, BLOCK_INTRA);
276  return 0;
277  }
278 
279 // clip predictors / edge ?
280 
281  P_LEFT[0]= left->mx;
282  P_LEFT[1]= left->my;
283  P_TOP [0]= top->mx;
284  P_TOP [1]= top->my;
285  P_TOPRIGHT[0]= tr->mx;
286  P_TOPRIGHT[1]= tr->my;
287 
288  last_mv[0][0]= s->block[index].mx;
289  last_mv[0][1]= s->block[index].my;
290  last_mv[1][0]= right->mx;
291  last_mv[1][1]= right->my;
292  last_mv[2][0]= bottom->mx;
293  last_mv[2][1]= bottom->my;
294 
295  s->m.mb_stride=2;
296  s->m.mb_x=
297  s->m.mb_y= 0;
298  c->skip= 0;
299 
300  av_assert1(c-> stride == stride);
301  av_assert1(c->uvstride == uvstride);
302 
303  c->penalty_factor = get_penalty_factor(s->lambda, s->lambda2, c->avctx->me_cmp);
304  c->sub_penalty_factor= get_penalty_factor(s->lambda, s->lambda2, c->avctx->me_sub_cmp);
305  c->mb_penalty_factor = get_penalty_factor(s->lambda, s->lambda2, c->avctx->mb_cmp);
306  c->current_mv_penalty= c->mv_penalty[s->m.f_code=1] + MAX_DMV;
307 
308  c->xmin = - x*block_w - 16+3;
309  c->ymin = - y*block_w - 16+3;
310  c->xmax = - (x+1)*block_w + (w<<(LOG2_MB_SIZE - s->block_max_depth)) + 16-3;
311  c->ymax = - (y+1)*block_w + (h<<(LOG2_MB_SIZE - s->block_max_depth)) + 16-3;
312 
313  if(P_LEFT[0] > (c->xmax<<shift)) P_LEFT[0] = (c->xmax<<shift);
314  if(P_LEFT[1] > (c->ymax<<shift)) P_LEFT[1] = (c->ymax<<shift);
315  if(P_TOP[0] > (c->xmax<<shift)) P_TOP[0] = (c->xmax<<shift);
316  if(P_TOP[1] > (c->ymax<<shift)) P_TOP[1] = (c->ymax<<shift);
317  if(P_TOPRIGHT[0] < (c->xmin * (1<<shift))) P_TOPRIGHT[0]= (c->xmin * (1<<shift));
318  if(P_TOPRIGHT[0] > (c->xmax<<shift)) P_TOPRIGHT[0]= (c->xmax<<shift); //due to pmx no clip
319  if(P_TOPRIGHT[1] > (c->ymax<<shift)) P_TOPRIGHT[1]= (c->ymax<<shift);
320 
321  P_MEDIAN[0]= mid_pred(P_LEFT[0], P_TOP[0], P_TOPRIGHT[0]);
322  P_MEDIAN[1]= mid_pred(P_LEFT[1], P_TOP[1], P_TOPRIGHT[1]);
323 
324  if (!y) {
325  c->pred_x= P_LEFT[0];
326  c->pred_y= P_LEFT[1];
327  } else {
328  c->pred_x = P_MEDIAN[0];
329  c->pred_y = P_MEDIAN[1];
330  }
331 
332  score= INT_MAX;
333  best_ref= 0;
334  for(ref=0; ref<s->ref_frames; ref++){
335  init_ref(c, current_data, s->last_picture[ref]->data, NULL, block_w*x, block_w*y, 0);
336 
337  ref_score= ff_epzs_motion_search(&s->m, &ref_mx, &ref_my, P, 0, /*ref_index*/ 0, last_mv,
338  (1<<16)>>shift, level-LOG2_MB_SIZE+4, block_w);
339 
340  av_assert2(ref_mx >= c->xmin);
341  av_assert2(ref_mx <= c->xmax);
342  av_assert2(ref_my >= c->ymin);
343  av_assert2(ref_my <= c->ymax);
344 
345  ref_score= c->sub_motion_search(&s->m, &ref_mx, &ref_my, ref_score, 0, 0, level-LOG2_MB_SIZE+4, block_w);
346  ref_score= ff_get_mb_score(&s->m, ref_mx, ref_my, 0, 0, level-LOG2_MB_SIZE+4, block_w, 0);
347  ref_score+= 2*av_log2(2*ref)*c->penalty_factor;
348  if(s->ref_mvs[ref]){
349  s->ref_mvs[ref][index][0]= ref_mx;
350  s->ref_mvs[ref][index][1]= ref_my;
351  s->ref_scores[ref][index]= ref_score;
352  }
353  if(score > ref_score){
354  score= ref_score;
355  best_ref= ref;
356  mx= ref_mx;
357  my= ref_my;
358  }
359  }
360  //FIXME if mb_cmp != SSE then intra cannot be compared currently and mb_penalty vs. lambda2
361 
362  // subpel search
363  base_bits= get_rac_count(&s->c) - 8*(s->c.bytestream - s->c.bytestream_start);
364  pc= s->c;
365  pc.bytestream_start=
366  pc.bytestream= p_buffer; //FIXME end/start? and at the other stoo
367  memcpy(p_state, s->block_state, sizeof(s->block_state));
368 
369  if(level!=s->block_max_depth)
370  put_rac(&pc, &p_state[4 + s_context], 1);
371  put_rac(&pc, &p_state[1 + left->type + top->type], 0);
372  if(s->ref_frames > 1)
373  put_symbol(&pc, &p_state[128 + 1024 + 32*ref_context], best_ref, 0);
374  pred_mv(s, &pmx, &pmy, best_ref, left, top, tr);
375  put_symbol(&pc, &p_state[128 + 32*(mx_context + 16*!!best_ref)], mx - pmx, 1);
376  put_symbol(&pc, &p_state[128 + 32*(my_context + 16*!!best_ref)], my - pmy, 1);
377  p_len= pc.bytestream - pc.bytestream_start;
378  score += (s->lambda2*(get_rac_count(&pc)-base_bits))>>FF_LAMBDA_SHIFT;
379 
380  block_s= block_w*block_w;
381  sum = pix_sum(current_data[0], stride, block_w, block_w);
382  l= (sum + block_s/2)/block_s;
383  iscore = pix_norm1(current_data[0], stride, block_w) - 2*l*sum + l*l*block_s;
384 
385  if (s->nb_planes > 2) {
386  block_s= block_w*block_w>>(s->chroma_h_shift + s->chroma_v_shift);
387  sum = pix_sum(current_data[1], uvstride, block_w>>s->chroma_h_shift, block_w>>s->chroma_v_shift);
388  cb= (sum + block_s/2)/block_s;
389  // iscore += pix_norm1(&current_mb[1][0], uvstride, block_w>>1) - 2*cb*sum + cb*cb*block_s;
390  sum = pix_sum(current_data[2], uvstride, block_w>>s->chroma_h_shift, block_w>>s->chroma_v_shift);
391  cr= (sum + block_s/2)/block_s;
392  // iscore += pix_norm1(&current_mb[2][0], uvstride, block_w>>1) - 2*cr*sum + cr*cr*block_s;
393  }else
394  cb = cr = 0;
395 
396  ic= s->c;
397  ic.bytestream_start=
398  ic.bytestream= i_buffer; //FIXME end/start? and at the other stoo
399  memcpy(i_state, s->block_state, sizeof(s->block_state));
400  if(level!=s->block_max_depth)
401  put_rac(&ic, &i_state[4 + s_context], 1);
402  put_rac(&ic, &i_state[1 + left->type + top->type], 1);
403  put_symbol(&ic, &i_state[32], l-pl , 1);
404  if (s->nb_planes > 2) {
405  put_symbol(&ic, &i_state[64], cb-pcb, 1);
406  put_symbol(&ic, &i_state[96], cr-pcr, 1);
407  }
408  i_len= ic.bytestream - ic.bytestream_start;
409  iscore += (s->lambda2*(get_rac_count(&ic)-base_bits))>>FF_LAMBDA_SHIFT;
410 
411  av_assert1(iscore < 255*255*256 + s->lambda2*10);
412  av_assert1(iscore >= 0);
413  av_assert1(l>=0 && l<=255);
414  av_assert1(pl>=0 && pl<=255);
415 
416  if(level==0){
417  int varc= iscore >> 8;
418  int vard= score >> 8;
419  if (vard <= 64 || vard < varc)
420  c->scene_change_score+= ff_sqrt(vard) - ff_sqrt(varc);
421  else
422  c->scene_change_score+= s->m.qscale;
423  }
424 
425  if(level!=s->block_max_depth){
426  put_rac(&s->c, &s->block_state[4 + s_context], 0);
427  score2 = encode_q_branch(s, level+1, 2*x+0, 2*y+0);
428  score2+= encode_q_branch(s, level+1, 2*x+1, 2*y+0);
429  score2+= encode_q_branch(s, level+1, 2*x+0, 2*y+1);
430  score2+= encode_q_branch(s, level+1, 2*x+1, 2*y+1);
431  score2+= s->lambda2>>FF_LAMBDA_SHIFT; //FIXME exact split overhead
432 
433  if(score2 < score && score2 < iscore)
434  return score2;
435  }
436 
437  if(iscore < score){
438  pred_mv(s, &pmx, &pmy, 0, left, top, tr);
439  memcpy(pbbak, i_buffer, i_len);
440  s->c= ic;
441  s->c.bytestream_start= pbbak_start;
442  s->c.bytestream= pbbak + i_len;
443  set_blocks(s, level, x, y, l, cb, cr, pmx, pmy, 0, BLOCK_INTRA);
444  memcpy(s->block_state, i_state, sizeof(s->block_state));
445  return iscore;
446  }else{
447  memcpy(pbbak, p_buffer, p_len);
448  s->c= pc;
449  s->c.bytestream_start= pbbak_start;
450  s->c.bytestream= pbbak + p_len;
451  set_blocks(s, level, x, y, pl, pcb, pcr, mx, my, best_ref, 0);
452  memcpy(s->block_state, p_state, sizeof(s->block_state));
453  return score;
454  }
455 }
456 
457 static void encode_q_branch2(SnowContext *s, int level, int x, int y){
458  const int w= s->b_width << s->block_max_depth;
459  const int rem_depth= s->block_max_depth - level;
460  const int index= (x + y*w) << rem_depth;
461  int trx= (x+1)<<rem_depth;
462  BlockNode *b= &s->block[index];
463  const BlockNode *left = x ? &s->block[index-1] : &null_block;
464  const BlockNode *top = y ? &s->block[index-w] : &null_block;
465  const BlockNode *tl = y && x ? &s->block[index-w-1] : left;
466  const BlockNode *tr = y && trx<w && ((x&1)==0 || level==0) ? &s->block[index-w+(1<<rem_depth)] : tl; //FIXME use lt
467  int pl = left->color[0];
468  int pcb= left->color[1];
469  int pcr= left->color[2];
470  int pmx, pmy;
471  int ref_context= av_log2(2*left->ref) + av_log2(2*top->ref);
472  int mx_context= av_log2(2*FFABS(left->mx - top->mx)) + 16*!!b->ref;
473  int my_context= av_log2(2*FFABS(left->my - top->my)) + 16*!!b->ref;
474  int s_context= 2*left->level + 2*top->level + tl->level + tr->level;
475 
476  if(s->keyframe){
477  set_blocks(s, level, x, y, pl, pcb, pcr, 0, 0, 0, BLOCK_INTRA);
478  return;
479  }
480 
481  if(level!=s->block_max_depth){
482  if(same_block(b,b+1) && same_block(b,b+w) && same_block(b,b+w+1)){
483  put_rac(&s->c, &s->block_state[4 + s_context], 1);
484  }else{
485  put_rac(&s->c, &s->block_state[4 + s_context], 0);
486  encode_q_branch2(s, level+1, 2*x+0, 2*y+0);
487  encode_q_branch2(s, level+1, 2*x+1, 2*y+0);
488  encode_q_branch2(s, level+1, 2*x+0, 2*y+1);
489  encode_q_branch2(s, level+1, 2*x+1, 2*y+1);
490  return;
491  }
492  }
493  if(b->type & BLOCK_INTRA){
494  pred_mv(s, &pmx, &pmy, 0, left, top, tr);
495  put_rac(&s->c, &s->block_state[1 + (left->type&1) + (top->type&1)], 1);
496  put_symbol(&s->c, &s->block_state[32], b->color[0]-pl , 1);
497  if (s->nb_planes > 2) {
498  put_symbol(&s->c, &s->block_state[64], b->color[1]-pcb, 1);
499  put_symbol(&s->c, &s->block_state[96], b->color[2]-pcr, 1);
500  }
501  set_blocks(s, level, x, y, b->color[0], b->color[1], b->color[2], pmx, pmy, 0, BLOCK_INTRA);
502  }else{
503  pred_mv(s, &pmx, &pmy, b->ref, left, top, tr);
504  put_rac(&s->c, &s->block_state[1 + (left->type&1) + (top->type&1)], 0);
505  if(s->ref_frames > 1)
506  put_symbol(&s->c, &s->block_state[128 + 1024 + 32*ref_context], b->ref, 0);
507  put_symbol(&s->c, &s->block_state[128 + 32*mx_context], b->mx - pmx, 1);
508  put_symbol(&s->c, &s->block_state[128 + 32*my_context], b->my - pmy, 1);
509  set_blocks(s, level, x, y, pl, pcb, pcr, b->mx, b->my, b->ref, 0);
510  }
511 }
512 
513 static int get_dc(SnowContext *s, int mb_x, int mb_y, int plane_index){
514  int i, x2, y2;
515  Plane *p= &s->plane[plane_index];
516  const int block_size = MB_SIZE >> s->block_max_depth;
517  const int block_w = plane_index ? block_size>>s->chroma_h_shift : block_size;
518  const int block_h = plane_index ? block_size>>s->chroma_v_shift : block_size;
519  const uint8_t *obmc = plane_index ? ff_obmc_tab[s->block_max_depth+s->chroma_h_shift] : ff_obmc_tab[s->block_max_depth];
520  const int obmc_stride= plane_index ? (2*block_size)>>s->chroma_h_shift : 2*block_size;
521  const int ref_stride= s->current_picture->linesize[plane_index];
522  uint8_t *src= s-> input_picture->data[plane_index];
523  IDWTELEM *dst= (IDWTELEM*)s->m.sc.obmc_scratchpad + plane_index*block_size*block_size*4; //FIXME change to unsigned
524  const int b_stride = s->b_width << s->block_max_depth;
525  const int w= p->width;
526  const int h= p->height;
527  int index= mb_x + mb_y*b_stride;
528  BlockNode *b= &s->block[index];
529  BlockNode backup= *b;
530  int ab=0;
531  int aa=0;
532 
533  av_assert2(s->chroma_h_shift == s->chroma_v_shift); //obmc stuff above
534 
535  b->type|= BLOCK_INTRA;
536  b->color[plane_index]= 0;
537  memset(dst, 0, obmc_stride*obmc_stride*sizeof(IDWTELEM));
538 
539  for(i=0; i<4; i++){
540  int mb_x2= mb_x + (i &1) - 1;
541  int mb_y2= mb_y + (i>>1) - 1;
542  int x= block_w*mb_x2 + block_w/2;
543  int y= block_h*mb_y2 + block_h/2;
544 
545  add_yblock(s, 0, NULL, dst + (i&1)*block_w + (i>>1)*obmc_stride*block_h, NULL, obmc,
546  x, y, block_w, block_h, w, h, obmc_stride, ref_stride, obmc_stride, mb_x2, mb_y2, 0, 0, plane_index);
547 
548  for(y2= FFMAX(y, 0); y2<FFMIN(h, y+block_h); y2++){
549  for(x2= FFMAX(x, 0); x2<FFMIN(w, x+block_w); x2++){
550  int index= x2-(block_w*mb_x - block_w/2) + (y2-(block_h*mb_y - block_h/2))*obmc_stride;
551  int obmc_v= obmc[index];
552  int d;
553  if(y<0) obmc_v += obmc[index + block_h*obmc_stride];
554  if(x<0) obmc_v += obmc[index + block_w];
555  if(y+block_h>h) obmc_v += obmc[index - block_h*obmc_stride];
556  if(x+block_w>w) obmc_v += obmc[index - block_w];
557  //FIXME precalculate this or simplify it somehow else
558 
559  d = -dst[index] + (1<<(FRAC_BITS-1));
560  dst[index] = d;
561  ab += (src[x2 + y2*ref_stride] - (d>>FRAC_BITS)) * obmc_v;
562  aa += obmc_v * obmc_v; //FIXME precalculate this
563  }
564  }
565  }
566  *b= backup;
567 
568  return av_clip_uint8( ROUNDED_DIV(ab<<LOG2_OBMC_MAX, aa) ); //FIXME we should not need clipping
569 }
570 
571 static inline int get_block_bits(SnowContext *s, int x, int y, int w){
572  const int b_stride = s->b_width << s->block_max_depth;
573  const int b_height = s->b_height<< s->block_max_depth;
574  int index= x + y*b_stride;
575  const BlockNode *b = &s->block[index];
576  const BlockNode *left = x ? &s->block[index-1] : &null_block;
577  const BlockNode *top = y ? &s->block[index-b_stride] : &null_block;
578  const BlockNode *tl = y && x ? &s->block[index-b_stride-1] : left;
579  const BlockNode *tr = y && x+w<b_stride ? &s->block[index-b_stride+w] : tl;
580  int dmx, dmy;
581 // int mx_context= av_log2(2*FFABS(left->mx - top->mx));
582 // int my_context= av_log2(2*FFABS(left->my - top->my));
583 
584  if(x<0 || x>=b_stride || y>=b_height)
585  return 0;
586 /*
587 1 0 0
588 01X 1-2 1
589 001XX 3-6 2-3
590 0001XXX 7-14 4-7
591 00001XXXX 15-30 8-15
592 */
593 //FIXME try accurate rate
594 //FIXME intra and inter predictors if surrounding blocks are not the same type
595  if(b->type & BLOCK_INTRA){
596  return 3+2*( av_log2(2*FFABS(left->color[0] - b->color[0]))
597  + av_log2(2*FFABS(left->color[1] - b->color[1]))
598  + av_log2(2*FFABS(left->color[2] - b->color[2])));
599  }else{
600  pred_mv(s, &dmx, &dmy, b->ref, left, top, tr);
601  dmx-= b->mx;
602  dmy-= b->my;
603  return 2*(1 + av_log2(2*FFABS(dmx)) //FIXME kill the 2* can be merged in lambda
604  + av_log2(2*FFABS(dmy))
605  + av_log2(2*b->ref));
606  }
607 }
608 
609 static int get_block_rd(SnowContext *s, int mb_x, int mb_y, int plane_index, uint8_t (*obmc_edged)[MB_SIZE * 2]){
610  Plane *p= &s->plane[plane_index];
611  const int block_size = MB_SIZE >> s->block_max_depth;
612  const int block_w = plane_index ? block_size>>s->chroma_h_shift : block_size;
613  const int block_h = plane_index ? block_size>>s->chroma_v_shift : block_size;
614  const int obmc_stride= plane_index ? (2*block_size)>>s->chroma_h_shift : 2*block_size;
615  const int ref_stride= s->current_picture->linesize[plane_index];
616  uint8_t *dst= s->current_picture->data[plane_index];
617  uint8_t *src= s-> input_picture->data[plane_index];
618  IDWTELEM *pred= (IDWTELEM*)s->m.sc.obmc_scratchpad + plane_index*block_size*block_size*4;
619  uint8_t *cur = s->scratchbuf;
620  uint8_t *tmp = s->emu_edge_buffer;
621  const int b_stride = s->b_width << s->block_max_depth;
622  const int b_height = s->b_height<< s->block_max_depth;
623  const int w= p->width;
624  const int h= p->height;
625  int distortion;
626  int rate= 0;
627  const int penalty_factor= get_penalty_factor(s->lambda, s->lambda2, s->avctx->me_cmp);
628  int sx= block_w*mb_x - block_w/2;
629  int sy= block_h*mb_y - block_h/2;
630  int x0= FFMAX(0,-sx);
631  int y0= FFMAX(0,-sy);
632  int x1= FFMIN(block_w*2, w-sx);
633  int y1= FFMIN(block_h*2, h-sy);
634  int i,x,y;
635 
636  av_assert2(s->chroma_h_shift == s->chroma_v_shift); //obmc and square assumtions below chckinhg only block_w
637 
638  ff_snow_pred_block(s, cur, tmp, ref_stride, sx, sy, block_w*2, block_h*2, &s->block[mb_x + mb_y*b_stride], plane_index, w, h);
639 
640  for(y=y0; y<y1; y++){
641  const uint8_t *obmc1= obmc_edged[y];
642  const IDWTELEM *pred1 = pred + y*obmc_stride;
643  uint8_t *cur1 = cur + y*ref_stride;
644  uint8_t *dst1 = dst + sx + (sy+y)*ref_stride;
645  for(x=x0; x<x1; x++){
646 #if FRAC_BITS >= LOG2_OBMC_MAX
647  int v = (cur1[x] * obmc1[x]) << (FRAC_BITS - LOG2_OBMC_MAX);
648 #else
649  int v = (cur1[x] * obmc1[x] + (1<<(LOG2_OBMC_MAX - FRAC_BITS-1))) >> (LOG2_OBMC_MAX - FRAC_BITS);
650 #endif
651  v = (v + pred1[x]) >> FRAC_BITS;
652  if(v&(~255)) v= ~(v>>31);
653  dst1[x] = v;
654  }
655  }
656 
657  /* copy the regions where obmc[] = (uint8_t)256 */
658  if(LOG2_OBMC_MAX == 8
659  && (mb_x == 0 || mb_x == b_stride-1)
660  && (mb_y == 0 || mb_y == b_height-1)){
661  if(mb_x == 0)
662  x1 = block_w;
663  else
664  x0 = block_w;
665  if(mb_y == 0)
666  y1 = block_h;
667  else
668  y0 = block_h;
669  for(y=y0; y<y1; y++)
670  memcpy(dst + sx+x0 + (sy+y)*ref_stride, cur + x0 + y*ref_stride, x1-x0);
671  }
672 
673  if(block_w==16){
674  /* FIXME rearrange dsputil to fit 32x32 cmp functions */
675  /* FIXME check alignment of the cmp wavelet vs the encoding wavelet */
676  /* FIXME cmps overlap but do not cover the wavelet's whole support.
677  * So improving the score of one block is not strictly guaranteed
678  * to improve the score of the whole frame, thus iterative motion
679  * estimation does not always converge. */
680  if(s->avctx->me_cmp == FF_CMP_W97)
681  distortion = ff_w97_32_c(&s->m, src + sx + sy*ref_stride, dst + sx + sy*ref_stride, ref_stride, 32);
682  else if(s->avctx->me_cmp == FF_CMP_W53)
683  distortion = ff_w53_32_c(&s->m, src + sx + sy*ref_stride, dst + sx + sy*ref_stride, ref_stride, 32);
684  else{
685  distortion = 0;
686  for(i=0; i<4; i++){
687  int off = sx+16*(i&1) + (sy+16*(i>>1))*ref_stride;
688  distortion += s->mecc.me_cmp[0](&s->m, src + off, dst + off, ref_stride, 16);
689  }
690  }
691  }else{
692  av_assert2(block_w==8);
693  distortion = s->mecc.me_cmp[0](&s->m, src + sx + sy*ref_stride, dst + sx + sy*ref_stride, ref_stride, block_w*2);
694  }
695 
696  if(plane_index==0){
697  for(i=0; i<4; i++){
698 /* ..RRr
699  * .RXx.
700  * rxx..
701  */
702  rate += get_block_bits(s, mb_x + (i&1) - (i>>1), mb_y + (i>>1), 1);
703  }
704  if(mb_x == b_stride-2)
705  rate += get_block_bits(s, mb_x + 1, mb_y + 1, 1);
706  }
707  return distortion + rate*penalty_factor;
708 }
709 
710 static int get_4block_rd(SnowContext *s, int mb_x, int mb_y, int plane_index){
711  int i, y2;
712  Plane *p= &s->plane[plane_index];
713  const int block_size = MB_SIZE >> s->block_max_depth;
714  const int block_w = plane_index ? block_size>>s->chroma_h_shift : block_size;
715  const int block_h = plane_index ? block_size>>s->chroma_v_shift : block_size;
716  const uint8_t *obmc = plane_index ? ff_obmc_tab[s->block_max_depth+s->chroma_h_shift] : ff_obmc_tab[s->block_max_depth];
717  const int obmc_stride= plane_index ? (2*block_size)>>s->chroma_h_shift : 2*block_size;
718  const int ref_stride= s->current_picture->linesize[plane_index];
719  uint8_t *dst= s->current_picture->data[plane_index];
720  uint8_t *src= s-> input_picture->data[plane_index];
721  //FIXME zero_dst is const but add_yblock changes dst if add is 0 (this is never the case for dst=zero_dst
722  // const has only been removed from zero_dst to suppress a warning
723  static IDWTELEM zero_dst[4096]; //FIXME
724  const int b_stride = s->b_width << s->block_max_depth;
725  const int w= p->width;
726  const int h= p->height;
727  int distortion= 0;
728  int rate= 0;
729  const int penalty_factor= get_penalty_factor(s->lambda, s->lambda2, s->avctx->me_cmp);
730 
731  av_assert2(s->chroma_h_shift == s->chroma_v_shift); //obmc and square assumtions below
732 
733  for(i=0; i<9; i++){
734  int mb_x2= mb_x + (i%3) - 1;
735  int mb_y2= mb_y + (i/3) - 1;
736  int x= block_w*mb_x2 + block_w/2;
737  int y= block_h*mb_y2 + block_h/2;
738 
739  add_yblock(s, 0, NULL, zero_dst, dst, obmc,
740  x, y, block_w, block_h, w, h, /*dst_stride*/0, ref_stride, obmc_stride, mb_x2, mb_y2, 1, 1, plane_index);
741 
742  //FIXME find a cleaner/simpler way to skip the outside stuff
743  for(y2= y; y2<0; y2++)
744  memcpy(dst + x + y2*ref_stride, src + x + y2*ref_stride, block_w);
745  for(y2= h; y2<y+block_h; y2++)
746  memcpy(dst + x + y2*ref_stride, src + x + y2*ref_stride, block_w);
747  if(x<0){
748  for(y2= y; y2<y+block_h; y2++)
749  memcpy(dst + x + y2*ref_stride, src + x + y2*ref_stride, -x);
750  }
751  if(x+block_w > w){
752  for(y2= y; y2<y+block_h; y2++)
753  memcpy(dst + w + y2*ref_stride, src + w + y2*ref_stride, x+block_w - w);
754  }
755 
756  av_assert1(block_w== 8 || block_w==16);
757  distortion += s->mecc.me_cmp[block_w==8](&s->m, src + x + y*ref_stride, dst + x + y*ref_stride, ref_stride, block_h);
758  }
759 
760  if(plane_index==0){
761  BlockNode *b= &s->block[mb_x+mb_y*b_stride];
762  int merged= same_block(b,b+1) && same_block(b,b+b_stride) && same_block(b,b+b_stride+1);
763 
764 /* ..RRRr
765  * .RXXx.
766  * .RXXx.
767  * rxxx.
768  */
769  if(merged)
770  rate = get_block_bits(s, mb_x, mb_y, 2);
771  for(i=merged?4:0; i<9; i++){
772  static const int dxy[9][2] = {{0,0},{1,0},{0,1},{1,1},{2,0},{2,1},{-1,2},{0,2},{1,2}};
773  rate += get_block_bits(s, mb_x + dxy[i][0], mb_y + dxy[i][1], 1);
774  }
775  }
776  return distortion + rate*penalty_factor;
777 }
778 
779 static int encode_subband_c0run(SnowContext *s, SubBand *b, const IDWTELEM *src, const IDWTELEM *parent, int stride, int orientation){
780  const int w= b->width;
781  const int h= b->height;
782  int x, y;
783 
784  if(1){
785  int run=0;
786  int *runs = s->run_buffer;
787  int run_index=0;
788  int max_index;
789 
790  for(y=0; y<h; y++){
791  for(x=0; x<w; x++){
792  int v, p=0;
793  int /*ll=0, */l=0, lt=0, t=0, rt=0;
794  v= src[x + y*stride];
795 
796  if(y){
797  t= src[x + (y-1)*stride];
798  if(x){
799  lt= src[x - 1 + (y-1)*stride];
800  }
801  if(x + 1 < w){
802  rt= src[x + 1 + (y-1)*stride];
803  }
804  }
805  if(x){
806  l= src[x - 1 + y*stride];
807  /*if(x > 1){
808  if(orientation==1) ll= src[y + (x-2)*stride];
809  else ll= src[x - 2 + y*stride];
810  }*/
811  }
812  if(parent){
813  int px= x>>1;
814  int py= y>>1;
815  if(px<b->parent->width && py<b->parent->height)
816  p= parent[px + py*2*stride];
817  }
818  if(!(/*ll|*/l|lt|t|rt|p)){
819  if(v){
820  runs[run_index++]= run;
821  run=0;
822  }else{
823  run++;
824  }
825  }
826  }
827  }
828  max_index= run_index;
829  runs[run_index++]= run;
830  run_index=0;
831  run= runs[run_index++];
832 
833  put_symbol2(&s->c, b->state[30], max_index, 0);
834  if(run_index <= max_index)
835  put_symbol2(&s->c, b->state[1], run, 3);
836 
837  for(y=0; y<h; y++){
838  if(s->c.bytestream_end - s->c.bytestream < w*40){
839  av_log(s->avctx, AV_LOG_ERROR, "encoded frame too large\n");
840  return AVERROR(ENOMEM);
841  }
842  for(x=0; x<w; x++){
843  int v, p=0;
844  int /*ll=0, */l=0, lt=0, t=0, rt=0;
845  v= src[x + y*stride];
846 
847  if(y){
848  t= src[x + (y-1)*stride];
849  if(x){
850  lt= src[x - 1 + (y-1)*stride];
851  }
852  if(x + 1 < w){
853  rt= src[x + 1 + (y-1)*stride];
854  }
855  }
856  if(x){
857  l= src[x - 1 + y*stride];
858  /*if(x > 1){
859  if(orientation==1) ll= src[y + (x-2)*stride];
860  else ll= src[x - 2 + y*stride];
861  }*/
862  }
863  if(parent){
864  int px= x>>1;
865  int py= y>>1;
866  if(px<b->parent->width && py<b->parent->height)
867  p= parent[px + py*2*stride];
868  }
869  if(/*ll|*/l|lt|t|rt|p){
870  int context= av_log2(/*FFABS(ll) + */3*FFABS(l) + FFABS(lt) + 2*FFABS(t) + FFABS(rt) + FFABS(p));
871 
872  put_rac(&s->c, &b->state[0][context], !!v);
873  }else{
874  if(!run){
875  run= runs[run_index++];
876 
877  if(run_index <= max_index)
878  put_symbol2(&s->c, b->state[1], run, 3);
879  av_assert2(v);
880  }else{
881  run--;
882  av_assert2(!v);
883  }
884  }
885  if(v){
886  int context= av_log2(/*FFABS(ll) + */3*FFABS(l) + FFABS(lt) + 2*FFABS(t) + FFABS(rt) + FFABS(p));
887  int l2= 2*FFABS(l) + (l<0);
888  int t2= 2*FFABS(t) + (t<0);
889 
890  put_symbol2(&s->c, b->state[context + 2], FFABS(v)-1, context-4);
891  put_rac(&s->c, &b->state[0][16 + 1 + 3 + ff_quant3bA[l2&0xFF] + 3*ff_quant3bA[t2&0xFF]], v<0);
892  }
893  }
894  }
895  }
896  return 0;
897 }
898 
899 static int encode_subband(SnowContext *s, SubBand *b, const IDWTELEM *src, const IDWTELEM *parent, int stride, int orientation){
900 // encode_subband_qtree(s, b, src, parent, stride, orientation);
901 // encode_subband_z0run(s, b, src, parent, stride, orientation);
902  return encode_subband_c0run(s, b, src, parent, stride, orientation);
903 // encode_subband_dzr(s, b, src, parent, stride, orientation);
904 }
905 
906 static av_always_inline int check_block(SnowContext *s, int mb_x, int mb_y, int p[3], int intra, uint8_t (*obmc_edged)[MB_SIZE * 2], int *best_rd){
907  const int b_stride= s->b_width << s->block_max_depth;
908  BlockNode *block= &s->block[mb_x + mb_y * b_stride];
909  BlockNode backup= *block;
910  unsigned value;
911  int rd, index;
912 
913  av_assert2(mb_x>=0 && mb_y>=0);
914  av_assert2(mb_x<b_stride);
915 
916  if(intra){
917  block->color[0] = p[0];
918  block->color[1] = p[1];
919  block->color[2] = p[2];
920  block->type |= BLOCK_INTRA;
921  }else{
922  index= (p[0] + 31*p[1]) & (ME_CACHE_SIZE-1);
923  value= s->me_cache_generation + (p[0]>>10) + (p[1]<<6) + (block->ref<<12);
924  if(s->me_cache[index] == value)
925  return 0;
926  s->me_cache[index]= value;
927 
928  block->mx= p[0];
929  block->my= p[1];
930  block->type &= ~BLOCK_INTRA;
931  }
932 
933  rd= get_block_rd(s, mb_x, mb_y, 0, obmc_edged) + s->intra_penalty * !!intra;
934 
935 //FIXME chroma
936  if(rd < *best_rd){
937  *best_rd= rd;
938  return 1;
939  }else{
940  *block= backup;
941  return 0;
942  }
943 }
944 
945 /* special case for int[2] args we discard afterwards,
946  * fixes compilation problem with gcc 2.95 */
947 static av_always_inline int check_block_inter(SnowContext *s, int mb_x, int mb_y, int p0, int p1, uint8_t (*obmc_edged)[MB_SIZE * 2], int *best_rd){
948  int p[2] = {p0, p1};
949  return check_block(s, mb_x, mb_y, p, 0, obmc_edged, best_rd);
950 }
951 
952 static av_always_inline int check_4block_inter(SnowContext *s, int mb_x, int mb_y, int p0, int p1, int ref, int *best_rd){
953  const int b_stride= s->b_width << s->block_max_depth;
954  BlockNode *block= &s->block[mb_x + mb_y * b_stride];
955  BlockNode backup[4];
956  unsigned value;
957  int rd, index;
958 
959  /* We don't initialize backup[] during variable declaration, because
960  * that fails to compile on MSVC: "cannot convert from 'BlockNode' to
961  * 'int16_t'". */
962  backup[0] = block[0];
963  backup[1] = block[1];
964  backup[2] = block[b_stride];
965  backup[3] = block[b_stride + 1];
966 
967  av_assert2(mb_x>=0 && mb_y>=0);
968  av_assert2(mb_x<b_stride);
969  av_assert2(((mb_x|mb_y)&1) == 0);
970 
971  index= (p0 + 31*p1) & (ME_CACHE_SIZE-1);
972  value= s->me_cache_generation + (p0>>10) + (p1<<6) + (block->ref<<12);
973  if(s->me_cache[index] == value)
974  return 0;
975  s->me_cache[index]= value;
976 
977  block->mx= p0;
978  block->my= p1;
979  block->ref= ref;
980  block->type &= ~BLOCK_INTRA;
981  block[1]= block[b_stride]= block[b_stride+1]= *block;
982 
983  rd= get_4block_rd(s, mb_x, mb_y, 0);
984 
985 //FIXME chroma
986  if(rd < *best_rd){
987  *best_rd= rd;
988  return 1;
989  }else{
990  block[0]= backup[0];
991  block[1]= backup[1];
992  block[b_stride]= backup[2];
993  block[b_stride+1]= backup[3];
994  return 0;
995  }
996 }
997 
998 static void iterative_me(SnowContext *s){
999  int pass, mb_x, mb_y;
1000  const int b_width = s->b_width << s->block_max_depth;
1001  const int b_height= s->b_height << s->block_max_depth;
1002  const int b_stride= b_width;
1003  int color[3];
1004 
1005  {
1006  RangeCoder r = s->c;
1007  uint8_t state[sizeof(s->block_state)];
1008  memcpy(state, s->block_state, sizeof(s->block_state));
1009  for(mb_y= 0; mb_y<s->b_height; mb_y++)
1010  for(mb_x= 0; mb_x<s->b_width; mb_x++)
1011  encode_q_branch(s, 0, mb_x, mb_y);
1012  s->c = r;
1013  memcpy(s->block_state, state, sizeof(s->block_state));
1014  }
1015 
1016  for(pass=0; pass<25; pass++){
1017  int change= 0;
1018 
1019  for(mb_y= 0; mb_y<b_height; mb_y++){
1020  for(mb_x= 0; mb_x<b_width; mb_x++){
1021  int dia_change, i, j, ref;
1022  int best_rd= INT_MAX, ref_rd;
1023  BlockNode backup, ref_b;
1024  const int index= mb_x + mb_y * b_stride;
1025  BlockNode *block= &s->block[index];
1026  BlockNode *tb = mb_y ? &s->block[index-b_stride ] : NULL;
1027  BlockNode *lb = mb_x ? &s->block[index -1] : NULL;
1028  BlockNode *rb = mb_x+1<b_width ? &s->block[index +1] : NULL;
1029  BlockNode *bb = mb_y+1<b_height ? &s->block[index+b_stride ] : NULL;
1030  BlockNode *tlb= mb_x && mb_y ? &s->block[index-b_stride-1] : NULL;
1031  BlockNode *trb= mb_x+1<b_width && mb_y ? &s->block[index-b_stride+1] : NULL;
1032  BlockNode *blb= mb_x && mb_y+1<b_height ? &s->block[index+b_stride-1] : NULL;
1033  BlockNode *brb= mb_x+1<b_width && mb_y+1<b_height ? &s->block[index+b_stride+1] : NULL;
1034  const int b_w= (MB_SIZE >> s->block_max_depth);
1035  uint8_t obmc_edged[MB_SIZE * 2][MB_SIZE * 2];
1036 
1037  if(pass && (block->type & BLOCK_OPT))
1038  continue;
1039  block->type |= BLOCK_OPT;
1040 
1041  backup= *block;
1042 
1043  if(!s->me_cache_generation)
1044  memset(s->me_cache, 0, sizeof(s->me_cache));
1045  s->me_cache_generation += 1<<22;
1046 
1047  //FIXME precalculate
1048  {
1049  int x, y;
1050  for (y = 0; y < b_w * 2; y++)
1051  memcpy(obmc_edged[y], ff_obmc_tab[s->block_max_depth] + y * b_w * 2, b_w * 2);
1052  if(mb_x==0)
1053  for(y=0; y<b_w*2; y++)
1054  memset(obmc_edged[y], obmc_edged[y][0] + obmc_edged[y][b_w-1], b_w);
1055  if(mb_x==b_stride-1)
1056  for(y=0; y<b_w*2; y++)
1057  memset(obmc_edged[y]+b_w, obmc_edged[y][b_w] + obmc_edged[y][b_w*2-1], b_w);
1058  if(mb_y==0){
1059  for(x=0; x<b_w*2; x++)
1060  obmc_edged[0][x] += obmc_edged[b_w-1][x];
1061  for(y=1; y<b_w; y++)
1062  memcpy(obmc_edged[y], obmc_edged[0], b_w*2);
1063  }
1064  if(mb_y==b_height-1){
1065  for(x=0; x<b_w*2; x++)
1066  obmc_edged[b_w*2-1][x] += obmc_edged[b_w][x];
1067  for(y=b_w; y<b_w*2-1; y++)
1068  memcpy(obmc_edged[y], obmc_edged[b_w*2-1], b_w*2);
1069  }
1070  }
1071 
1072  //skip stuff outside the picture
1073  if(mb_x==0 || mb_y==0 || mb_x==b_width-1 || mb_y==b_height-1){
1074  uint8_t *src= s-> input_picture->data[0];
1075  uint8_t *dst= s->current_picture->data[0];
1076  const int stride= s->current_picture->linesize[0];
1077  const int block_w= MB_SIZE >> s->block_max_depth;
1078  const int block_h= MB_SIZE >> s->block_max_depth;
1079  const int sx= block_w*mb_x - block_w/2;
1080  const int sy= block_h*mb_y - block_h/2;
1081  const int w= s->plane[0].width;
1082  const int h= s->plane[0].height;
1083  int y;
1084 
1085  for(y=sy; y<0; y++)
1086  memcpy(dst + sx + y*stride, src + sx + y*stride, block_w*2);
1087  for(y=h; y<sy+block_h*2; y++)
1088  memcpy(dst + sx + y*stride, src + sx + y*stride, block_w*2);
1089  if(sx<0){
1090  for(y=sy; y<sy+block_h*2; y++)
1091  memcpy(dst + sx + y*stride, src + sx + y*stride, -sx);
1092  }
1093  if(sx+block_w*2 > w){
1094  for(y=sy; y<sy+block_h*2; y++)
1095  memcpy(dst + w + y*stride, src + w + y*stride, sx+block_w*2 - w);
1096  }
1097  }
1098 
1099  // intra(black) = neighbors' contribution to the current block
1100  for(i=0; i < s->nb_planes; i++)
1101  color[i]= get_dc(s, mb_x, mb_y, i);
1102 
1103  // get previous score (cannot be cached due to OBMC)
1104  if(pass > 0 && (block->type&BLOCK_INTRA)){
1105  int color0[3]= {block->color[0], block->color[1], block->color[2]};
1106  check_block(s, mb_x, mb_y, color0, 1, obmc_edged, &best_rd);
1107  }else
1108  check_block_inter(s, mb_x, mb_y, block->mx, block->my, obmc_edged, &best_rd);
1109 
1110  ref_b= *block;
1111  ref_rd= best_rd;
1112  for(ref=0; ref < s->ref_frames; ref++){
1113  int16_t (*mvr)[2]= &s->ref_mvs[ref][index];
1114  if(s->ref_scores[ref][index] > s->ref_scores[ref_b.ref][index]*3/2) //FIXME tune threshold
1115  continue;
1116  block->ref= ref;
1117  best_rd= INT_MAX;
1118 
1119  check_block_inter(s, mb_x, mb_y, mvr[0][0], mvr[0][1], obmc_edged, &best_rd);
1120  check_block_inter(s, mb_x, mb_y, 0, 0, obmc_edged, &best_rd);
1121  if(tb)
1122  check_block_inter(s, mb_x, mb_y, mvr[-b_stride][0], mvr[-b_stride][1], obmc_edged, &best_rd);
1123  if(lb)
1124  check_block_inter(s, mb_x, mb_y, mvr[-1][0], mvr[-1][1], obmc_edged, &best_rd);
1125  if(rb)
1126  check_block_inter(s, mb_x, mb_y, mvr[1][0], mvr[1][1], obmc_edged, &best_rd);
1127  if(bb)
1128  check_block_inter(s, mb_x, mb_y, mvr[b_stride][0], mvr[b_stride][1], obmc_edged, &best_rd);
1129 
1130  /* fullpel ME */
1131  //FIXME avoid subpel interpolation / round to nearest integer
1132  do{
1133  int newx = block->mx;
1134  int newy = block->my;
1135  int dia_size = s->iterative_dia_size ? s->iterative_dia_size : FFMAX(s->avctx->dia_size, 1);
1136  dia_change=0;
1137  for(i=0; i < dia_size; i++){
1138  for(j=0; j<i; j++){
1139  dia_change |= check_block_inter(s, mb_x, mb_y, newx+4*(i-j), newy+(4*j), obmc_edged, &best_rd);
1140  dia_change |= check_block_inter(s, mb_x, mb_y, newx-4*(i-j), newy-(4*j), obmc_edged, &best_rd);
1141  dia_change |= check_block_inter(s, mb_x, mb_y, newx-(4*j), newy+4*(i-j), obmc_edged, &best_rd);
1142  dia_change |= check_block_inter(s, mb_x, mb_y, newx+(4*j), newy-4*(i-j), obmc_edged, &best_rd);
1143  }
1144  }
1145  }while(dia_change);
1146  /* subpel ME */
1147  do{
1148  static const int square[8][2]= {{+1, 0},{-1, 0},{ 0,+1},{ 0,-1},{+1,+1},{-1,-1},{+1,-1},{-1,+1},};
1149  dia_change=0;
1150  for(i=0; i<8; i++)
1151  dia_change |= check_block_inter(s, mb_x, mb_y, block->mx+square[i][0], block->my+square[i][1], obmc_edged, &best_rd);
1152  }while(dia_change);
1153  //FIXME or try the standard 2 pass qpel or similar
1154 
1155  mvr[0][0]= block->mx;
1156  mvr[0][1]= block->my;
1157  if(ref_rd > best_rd){
1158  ref_rd= best_rd;
1159  ref_b= *block;
1160  }
1161  }
1162  best_rd= ref_rd;
1163  *block= ref_b;
1164  check_block(s, mb_x, mb_y, color, 1, obmc_edged, &best_rd);
1165  //FIXME RD style color selection
1166  if(!same_block(block, &backup)){
1167  if(tb ) tb ->type &= ~BLOCK_OPT;
1168  if(lb ) lb ->type &= ~BLOCK_OPT;
1169  if(rb ) rb ->type &= ~BLOCK_OPT;
1170  if(bb ) bb ->type &= ~BLOCK_OPT;
1171  if(tlb) tlb->type &= ~BLOCK_OPT;
1172  if(trb) trb->type &= ~BLOCK_OPT;
1173  if(blb) blb->type &= ~BLOCK_OPT;
1174  if(brb) brb->type &= ~BLOCK_OPT;
1175  change ++;
1176  }
1177  }
1178  }
1179  av_log(s->avctx, AV_LOG_DEBUG, "pass:%d changed:%d\n", pass, change);
1180  if(!change)
1181  break;
1182  }
1183 
1184  if(s->block_max_depth == 1){
1185  int change= 0;
1186  for(mb_y= 0; mb_y<b_height; mb_y+=2){
1187  for(mb_x= 0; mb_x<b_width; mb_x+=2){
1188  int i;
1189  int best_rd, init_rd;
1190  const int index= mb_x + mb_y * b_stride;
1191  BlockNode *b[4];
1192 
1193  b[0]= &s->block[index];
1194  b[1]= b[0]+1;
1195  b[2]= b[0]+b_stride;
1196  b[3]= b[2]+1;
1197  if(same_block(b[0], b[1]) &&
1198  same_block(b[0], b[2]) &&
1199  same_block(b[0], b[3]))
1200  continue;
1201 
1202  if(!s->me_cache_generation)
1203  memset(s->me_cache, 0, sizeof(s->me_cache));
1204  s->me_cache_generation += 1<<22;
1205 
1206  init_rd= best_rd= get_4block_rd(s, mb_x, mb_y, 0);
1207 
1208  //FIXME more multiref search?
1209  check_4block_inter(s, mb_x, mb_y,
1210  (b[0]->mx + b[1]->mx + b[2]->mx + b[3]->mx + 2) >> 2,
1211  (b[0]->my + b[1]->my + b[2]->my + b[3]->my + 2) >> 2, 0, &best_rd);
1212 
1213  for(i=0; i<4; i++)
1214  if(!(b[i]->type&BLOCK_INTRA))
1215  check_4block_inter(s, mb_x, mb_y, b[i]->mx, b[i]->my, b[i]->ref, &best_rd);
1216 
1217  if(init_rd != best_rd)
1218  change++;
1219  }
1220  }
1221  av_log(s->avctx, AV_LOG_ERROR, "pass:4mv changed:%d\n", change*4);
1222  }
1223 }
1224 
1225 static void encode_blocks(SnowContext *s, int search){
1226  int x, y;
1227  int w= s->b_width;
1228  int h= s->b_height;
1229 
1230  if(s->motion_est == FF_ME_ITER && !s->keyframe && search)
1231  iterative_me(s);
1232 
1233  for(y=0; y<h; y++){
1234  if(s->c.bytestream_end - s->c.bytestream < w*MB_SIZE*MB_SIZE*3){ //FIXME nicer limit
1235  av_log(s->avctx, AV_LOG_ERROR, "encoded frame too large\n");
1236  return;
1237  }
1238  for(x=0; x<w; x++){
1239  if(s->motion_est == FF_ME_ITER || !search)
1240  encode_q_branch2(s, 0, x, y);
1241  else
1242  encode_q_branch (s, 0, x, y);
1243  }
1244  }
1245 }
1246 
1247 static void quantize(SnowContext *s, SubBand *b, IDWTELEM *dst, DWTELEM *src, int stride, int bias){
1248  const int w= b->width;
1249  const int h= b->height;
1250  const int qlog= av_clip(s->qlog + b->qlog, 0, QROOT*16);
1251  const int qmul= ff_qexp[qlog&(QROOT-1)]<<((qlog>>QSHIFT) + ENCODER_EXTRA_BITS);
1252  int x,y, thres1, thres2;
1253 
1254  if(s->qlog == LOSSLESS_QLOG){
1255  for(y=0; y<h; y++)
1256  for(x=0; x<w; x++)
1257  dst[x + y*stride]= src[x + y*stride];
1258  return;
1259  }
1260 
1261  bias= bias ? 0 : (3*qmul)>>3;
1262  thres1= ((qmul - bias)>>QEXPSHIFT) - 1;
1263  thres2= 2*thres1;
1264 
1265  if(!bias){
1266  for(y=0; y<h; y++){
1267  for(x=0; x<w; x++){
1268  int i= src[x + y*stride];
1269 
1270  if((unsigned)(i+thres1) > thres2){
1271  if(i>=0){
1272  i<<= QEXPSHIFT;
1273  i/= qmul; //FIXME optimize
1274  dst[x + y*stride]= i;
1275  }else{
1276  i= -i;
1277  i<<= QEXPSHIFT;
1278  i/= qmul; //FIXME optimize
1279  dst[x + y*stride]= -i;
1280  }
1281  }else
1282  dst[x + y*stride]= 0;
1283  }
1284  }
1285  }else{
1286  for(y=0; y<h; y++){
1287  for(x=0; x<w; x++){
1288  int i= src[x + y*stride];
1289 
1290  if((unsigned)(i+thres1) > thres2){
1291  if(i>=0){
1292  i<<= QEXPSHIFT;
1293  i= (i + bias) / qmul; //FIXME optimize
1294  dst[x + y*stride]= i;
1295  }else{
1296  i= -i;
1297  i<<= QEXPSHIFT;
1298  i= (i + bias) / qmul; //FIXME optimize
1299  dst[x + y*stride]= -i;
1300  }
1301  }else
1302  dst[x + y*stride]= 0;
1303  }
1304  }
1305  }
1306 }
1307 
1309  const int w= b->width;
1310  const int h= b->height;
1311  const int qlog= av_clip(s->qlog + b->qlog, 0, QROOT*16);
1312  const int qmul= ff_qexp[qlog&(QROOT-1)]<<(qlog>>QSHIFT);
1313  const int qadd= (s->qbias*qmul)>>QBIAS_SHIFT;
1314  int x,y;
1315 
1316  if(s->qlog == LOSSLESS_QLOG) return;
1317 
1318  for(y=0; y<h; y++){
1319  for(x=0; x<w; x++){
1320  int i= src[x + y*stride];
1321  if(i<0){
1322  src[x + y*stride]= -((-i*qmul + qadd)>>(QEXPSHIFT)); //FIXME try different bias
1323  }else if(i>0){
1324  src[x + y*stride]= (( i*qmul + qadd)>>(QEXPSHIFT));
1325  }
1326  }
1327  }
1328 }
1329 
1330 static void decorrelate(SnowContext *s, SubBand *b, IDWTELEM *src, int stride, int inverse, int use_median){
1331  const int w= b->width;
1332  const int h= b->height;
1333  int x,y;
1334 
1335  for(y=h-1; y>=0; y--){
1336  for(x=w-1; x>=0; x--){
1337  int i= x + y*stride;
1338 
1339  if(x){
1340  if(use_median){
1341  if(y && x+1<w) src[i] -= mid_pred(src[i - 1], src[i - stride], src[i - stride + 1]);
1342  else src[i] -= src[i - 1];
1343  }else{
1344  if(y) src[i] -= mid_pred(src[i - 1], src[i - stride], src[i - 1] + src[i - stride] - src[i - 1 - stride]);
1345  else src[i] -= src[i - 1];
1346  }
1347  }else{
1348  if(y) src[i] -= src[i - stride];
1349  }
1350  }
1351  }
1352 }
1353 
1354 static void correlate(SnowContext *s, SubBand *b, IDWTELEM *src, int stride, int inverse, int use_median){
1355  const int w= b->width;
1356  const int h= b->height;
1357  int x,y;
1358 
1359  for(y=0; y<h; y++){
1360  for(x=0; x<w; x++){
1361  int i= x + y*stride;
1362 
1363  if(x){
1364  if(use_median){
1365  if(y && x+1<w) src[i] += mid_pred(src[i - 1], src[i - stride], src[i - stride + 1]);
1366  else src[i] += src[i - 1];
1367  }else{
1368  if(y) src[i] += mid_pred(src[i - 1], src[i - stride], src[i - 1] + src[i - stride] - src[i - 1 - stride]);
1369  else src[i] += src[i - 1];
1370  }
1371  }else{
1372  if(y) src[i] += src[i - stride];
1373  }
1374  }
1375  }
1376 }
1377 
1379  int plane_index, level, orientation;
1380 
1381  for(plane_index=0; plane_index<FFMIN(s->nb_planes, 2); plane_index++){
1382  for(level=0; level<s->spatial_decomposition_count; level++){
1383  for(orientation=level ? 1:0; orientation<4; orientation++){
1384  if(orientation==2) continue;
1385  put_symbol(&s->c, s->header_state, s->plane[plane_index].band[level][orientation].qlog, 1);
1386  }
1387  }
1388  }
1389 }
1390 
1392  int plane_index, i;
1393  uint8_t kstate[32];
1394 
1395  memset(kstate, MID_STATE, sizeof(kstate));
1396 
1397  put_rac(&s->c, kstate, s->keyframe);
1398  if(s->keyframe || s->always_reset){
1400  s->last_spatial_decomposition_type=
1401  s->last_qlog=
1402  s->last_qbias=
1403  s->last_mv_scale=
1404  s->last_block_max_depth= 0;
1405  for(plane_index=0; plane_index<2; plane_index++){
1406  Plane *p= &s->plane[plane_index];
1407  p->last_htaps=0;
1408  p->last_diag_mc=0;
1409  memset(p->last_hcoeff, 0, sizeof(p->last_hcoeff));
1410  }
1411  }
1412  if(s->keyframe){
1413  put_symbol(&s->c, s->header_state, s->version, 0);
1414  put_rac(&s->c, s->header_state, s->always_reset);
1415  put_symbol(&s->c, s->header_state, s->temporal_decomposition_type, 0);
1416  put_symbol(&s->c, s->header_state, s->temporal_decomposition_count, 0);
1417  put_symbol(&s->c, s->header_state, s->spatial_decomposition_count, 0);
1418  put_symbol(&s->c, s->header_state, s->colorspace_type, 0);
1419  if (s->nb_planes > 2) {
1420  put_symbol(&s->c, s->header_state, s->chroma_h_shift, 0);
1421  put_symbol(&s->c, s->header_state, s->chroma_v_shift, 0);
1422  }
1423  put_rac(&s->c, s->header_state, s->spatial_scalability);
1424 // put_rac(&s->c, s->header_state, s->rate_scalability);
1425  put_symbol(&s->c, s->header_state, s->max_ref_frames-1, 0);
1426 
1427  encode_qlogs(s);
1428  }
1429 
1430  if(!s->keyframe){
1431  int update_mc=0;
1432  for(plane_index=0; plane_index<FFMIN(s->nb_planes, 2); plane_index++){
1433  Plane *p= &s->plane[plane_index];
1434  update_mc |= p->last_htaps != p->htaps;
1435  update_mc |= p->last_diag_mc != p->diag_mc;
1436  update_mc |= !!memcmp(p->last_hcoeff, p->hcoeff, sizeof(p->hcoeff));
1437  }
1438  put_rac(&s->c, s->header_state, update_mc);
1439  if(update_mc){
1440  for(plane_index=0; plane_index<FFMIN(s->nb_planes, 2); plane_index++){
1441  Plane *p= &s->plane[plane_index];
1442  put_rac(&s->c, s->header_state, p->diag_mc);
1443  put_symbol(&s->c, s->header_state, p->htaps/2-1, 0);
1444  for(i= p->htaps/2; i; i--)
1445  put_symbol(&s->c, s->header_state, FFABS(p->hcoeff[i]), 0);
1446  }
1447  }
1448  if(s->last_spatial_decomposition_count != s->spatial_decomposition_count){
1449  put_rac(&s->c, s->header_state, 1);
1450  put_symbol(&s->c, s->header_state, s->spatial_decomposition_count, 0);
1451  encode_qlogs(s);
1452  }else
1453  put_rac(&s->c, s->header_state, 0);
1454  }
1455 
1456  put_symbol(&s->c, s->header_state, s->spatial_decomposition_type - s->last_spatial_decomposition_type, 1);
1457  put_symbol(&s->c, s->header_state, s->qlog - s->last_qlog , 1);
1458  put_symbol(&s->c, s->header_state, s->mv_scale - s->last_mv_scale, 1);
1459  put_symbol(&s->c, s->header_state, s->qbias - s->last_qbias , 1);
1460  put_symbol(&s->c, s->header_state, s->block_max_depth - s->last_block_max_depth, 1);
1461 
1462 }
1463 
1465  int plane_index;
1466 
1467  if(!s->keyframe){
1468  for(plane_index=0; plane_index<2; plane_index++){
1469  Plane *p= &s->plane[plane_index];
1470  p->last_diag_mc= p->diag_mc;
1471  p->last_htaps = p->htaps;
1472  memcpy(p->last_hcoeff, p->hcoeff, sizeof(p->hcoeff));
1473  }
1474  }
1475 
1476  s->last_spatial_decomposition_type = s->spatial_decomposition_type;
1477  s->last_qlog = s->qlog;
1478  s->last_qbias = s->qbias;
1479  s->last_mv_scale = s->mv_scale;
1480  s->last_block_max_depth = s->block_max_depth;
1481  s->last_spatial_decomposition_count = s->spatial_decomposition_count;
1482 }
1483 
1484 static int qscale2qlog(int qscale){
1485  return lrint(QROOT*log2(qscale / (float)FF_QP2LAMBDA))
1486  + 61*QROOT/8; ///< 64 > 60
1487 }
1488 
1490 {
1491  /* Estimate the frame's complexity as a sum of weighted dwt coefficients.
1492  * FIXME we know exact mv bits at this point,
1493  * but ratecontrol isn't set up to include them. */
1494  uint32_t coef_sum= 0;
1495  int level, orientation, delta_qlog;
1496 
1497  for(level=0; level<s->spatial_decomposition_count; level++){
1498  for(orientation=level ? 1 : 0; orientation<4; orientation++){
1499  SubBand *b= &s->plane[0].band[level][orientation];
1500  IDWTELEM *buf= b->ibuf;
1501  const int w= b->width;
1502  const int h= b->height;
1503  const int stride= b->stride;
1504  const int qlog= av_clip(2*QROOT + b->qlog, 0, QROOT*16);
1505  const int qmul= ff_qexp[qlog&(QROOT-1)]<<(qlog>>QSHIFT);
1506  const int qdiv= (1<<16)/qmul;
1507  int x, y;
1508  //FIXME this is ugly
1509  for(y=0; y<h; y++)
1510  for(x=0; x<w; x++)
1511  buf[x+y*stride]= b->buf[x+y*stride];
1512  if(orientation==0)
1513  decorrelate(s, b, buf, stride, 1, 0);
1514  for(y=0; y<h; y++)
1515  for(x=0; x<w; x++)
1516  coef_sum+= abs(buf[x+y*stride]) * qdiv >> 16;
1517  }
1518  }
1519 
1520  /* ugly, ratecontrol just takes a sqrt again */
1521  av_assert0(coef_sum < INT_MAX);
1522  coef_sum = (uint64_t)coef_sum * coef_sum >> 16;
1523 
1524  if(pict->pict_type == AV_PICTURE_TYPE_I){
1525  s->m.current_picture.mb_var_sum= coef_sum;
1526  s->m.current_picture.mc_mb_var_sum= 0;
1527  }else{
1528  s->m.current_picture.mc_mb_var_sum= coef_sum;
1529  s->m.current_picture.mb_var_sum= 0;
1530  }
1531 
1532  pict->quality= ff_rate_estimate_qscale(&s->m, 1);
1533  if (pict->quality < 0)
1534  return INT_MIN;
1535  s->lambda= pict->quality * 3/2;
1536  delta_qlog= qscale2qlog(pict->quality) - s->qlog;
1537  s->qlog+= delta_qlog;
1538  return delta_qlog;
1539 }
1540 
1542  int width = p->width;
1543  int height= p->height;
1544  int level, orientation, x, y;
1545 
1546  for(level=0; level<s->spatial_decomposition_count; level++){
1547  int64_t error=0;
1548  for(orientation=level ? 1 : 0; orientation<4; orientation++){
1549  SubBand *b= &p->band[level][orientation];
1550  IDWTELEM *ibuf= b->ibuf;
1551 
1552  memset(s->spatial_idwt_buffer, 0, sizeof(*s->spatial_idwt_buffer)*width*height);
1553  ibuf[b->width/2 + b->height/2*b->stride]= 256*16;
1554  ff_spatial_idwt(s->spatial_idwt_buffer, s->temp_idwt_buffer, width, height, width, s->spatial_decomposition_type, s->spatial_decomposition_count);
1555  for(y=0; y<height; y++){
1556  for(x=0; x<width; x++){
1557  int64_t d= s->spatial_idwt_buffer[x + y*width]*16;
1558  error += d*d;
1559  }
1560  }
1561  if (orientation == 2)
1562  error /= 2;
1563  b->qlog= (int)(QROOT * log2(352256.0/sqrt(error)) + 0.5);
1564  if (orientation != 1)
1565  error = 0;
1566  }
1567  p->band[level][1].qlog = p->band[level][2].qlog;
1568  }
1569 }
1570 
1572  const AVFrame *pict, int *got_packet)
1573 {
1574  SnowContext *s = avctx->priv_data;
1575  RangeCoder * const c= &s->c;
1576  AVFrame *pic;
1577  const int width= s->avctx->width;
1578  const int height= s->avctx->height;
1579  int level, orientation, plane_index, i, y, ret;
1580  uint8_t rc_header_bak[sizeof(s->header_state)];
1581  uint8_t rc_block_bak[sizeof(s->block_state)];
1582 
1583  if ((ret = ff_alloc_packet2(avctx, pkt, s->b_width*s->b_height*MB_SIZE*MB_SIZE*3 + AV_INPUT_BUFFER_MIN_SIZE, 0)) < 0)
1584  return ret;
1585 
1587  ff_build_rac_states(c, (1LL<<32)/20, 256-8);
1588 
1589  for(i=0; i < s->nb_planes; i++){
1590  int hshift= i ? s->chroma_h_shift : 0;
1591  int vshift= i ? s->chroma_v_shift : 0;
1592  for(y=0; y<AV_CEIL_RSHIFT(height, vshift); y++)
1593  memcpy(&s->input_picture->data[i][y * s->input_picture->linesize[i]],
1594  &pict->data[i][y * pict->linesize[i]],
1595  AV_CEIL_RSHIFT(width, hshift));
1596  s->mpvencdsp.draw_edges(s->input_picture->data[i], s->input_picture->linesize[i],
1597  AV_CEIL_RSHIFT(width, hshift), AV_CEIL_RSHIFT(height, vshift),
1598  EDGE_WIDTH >> hshift, EDGE_WIDTH >> vshift,
1599  EDGE_TOP | EDGE_BOTTOM);
1600 
1601  }
1602  emms_c();
1603  pic = s->input_picture;
1604  pic->pict_type = pict->pict_type;
1605  pic->quality = pict->quality;
1606 
1607  s->m.picture_number= avctx->frame_number;
1608  if(avctx->flags&AV_CODEC_FLAG_PASS2){
1609  s->m.pict_type = pic->pict_type = s->m.rc_context.entry[avctx->frame_number].new_pict_type;
1610  s->keyframe = pic->pict_type == AV_PICTURE_TYPE_I;
1611  if(!(avctx->flags&AV_CODEC_FLAG_QSCALE)) {
1612  pic->quality = ff_rate_estimate_qscale(&s->m, 0);
1613  if (pic->quality < 0)
1614  return -1;
1615  }
1616  }else{
1617  s->keyframe= avctx->gop_size==0 || avctx->frame_number % avctx->gop_size == 0;
1618  s->m.pict_type = pic->pict_type = s->keyframe ? AV_PICTURE_TYPE_I : AV_PICTURE_TYPE_P;
1619  }
1620 
1621  if(s->pass1_rc && avctx->frame_number == 0)
1622  pic->quality = 2*FF_QP2LAMBDA;
1623  if (pic->quality) {
1624  s->qlog = qscale2qlog(pic->quality);
1625  s->lambda = pic->quality * 3/2;
1626  }
1627  if (s->qlog < 0 || (!pic->quality && (avctx->flags & AV_CODEC_FLAG_QSCALE))) {
1628  s->qlog= LOSSLESS_QLOG;
1629  s->lambda = 0;
1630  }//else keep previous frame's qlog until after motion estimation
1631 
1632 #if FF_API_CODED_FRAME
1634  av_frame_unref(avctx->coded_frame);
1636 #endif
1637 
1638  if (s->current_picture->data[0]) {
1639  int w = s->avctx->width;
1640  int h = s->avctx->height;
1641 
1642 #if FF_API_CODED_FRAME
1643  ret = av_frame_make_writable(s->current_picture);
1644  if (ret < 0)
1645  return ret;
1646 #endif
1647 
1648  s->mpvencdsp.draw_edges(s->current_picture->data[0],
1649  s->current_picture->linesize[0], w , h ,
1651  if (s->current_picture->data[2]) {
1652  s->mpvencdsp.draw_edges(s->current_picture->data[1],
1653  s->current_picture->linesize[1], w>>s->chroma_h_shift, h>>s->chroma_v_shift,
1654  EDGE_WIDTH>>s->chroma_h_shift, EDGE_WIDTH>>s->chroma_v_shift, EDGE_TOP | EDGE_BOTTOM);
1655  s->mpvencdsp.draw_edges(s->current_picture->data[2],
1656  s->current_picture->linesize[2], w>>s->chroma_h_shift, h>>s->chroma_v_shift,
1657  EDGE_WIDTH>>s->chroma_h_shift, EDGE_WIDTH>>s->chroma_v_shift, EDGE_TOP | EDGE_BOTTOM);
1658  }
1659  emms_c();
1660  }
1661 
1663 #if FF_API_CODED_FRAME
1665  ret = av_frame_ref(avctx->coded_frame, s->current_picture);
1667 #endif
1668  if (ret < 0)
1669  return ret;
1670 
1671  s->m.current_picture_ptr= &s->m.current_picture;
1672  s->m.current_picture.f = s->current_picture;
1673  s->m.current_picture.f->pts = pict->pts;
1674  if(pic->pict_type == AV_PICTURE_TYPE_P){
1675  int block_width = (width +15)>>4;
1676  int block_height= (height+15)>>4;
1677  int stride= s->current_picture->linesize[0];
1678 
1679  av_assert0(s->current_picture->data[0]);
1680  av_assert0(s->last_picture[0]->data[0]);
1681 
1682  s->m.avctx= s->avctx;
1683  s->m. last_picture.f = s->last_picture[0];
1684  s->m. new_picture.f = s->input_picture;
1685  s->m. last_picture_ptr= &s->m. last_picture;
1686  s->m.linesize = stride;
1687  s->m.uvlinesize= s->current_picture->linesize[1];
1688  s->m.width = width;
1689  s->m.height= height;
1690  s->m.mb_width = block_width;
1691  s->m.mb_height= block_height;
1692  s->m.mb_stride= s->m.mb_width+1;
1693  s->m.b8_stride= 2*s->m.mb_width+1;
1694  s->m.f_code=1;
1695  s->m.pict_type = pic->pict_type;
1696  s->m.motion_est= s->motion_est;
1697  s->m.me.scene_change_score=0;
1698  s->m.me.dia_size = avctx->dia_size;
1699  s->m.quarter_sample= (s->avctx->flags & AV_CODEC_FLAG_QPEL)!=0;
1700  s->m.out_format= FMT_H263;
1701  s->m.unrestricted_mv= 1;
1702 
1703  s->m.lambda = s->lambda;
1704  s->m.qscale= (s->m.lambda*139 + FF_LAMBDA_SCALE*64) >> (FF_LAMBDA_SHIFT + 7);
1705  s->lambda2= s->m.lambda2= (s->m.lambda*s->m.lambda + FF_LAMBDA_SCALE/2) >> FF_LAMBDA_SHIFT;
1706 
1707  s->m.mecc= s->mecc; //move
1708  s->m.qdsp= s->qdsp; //move
1709  s->m.hdsp = s->hdsp;
1710  ff_init_me(&s->m);
1711  s->hdsp = s->m.hdsp;
1712  s->mecc= s->m.mecc;
1713  }
1714 
1715  if(s->pass1_rc){
1716  memcpy(rc_header_bak, s->header_state, sizeof(s->header_state));
1717  memcpy(rc_block_bak, s->block_state, sizeof(s->block_state));
1718  }
1719 
1720 redo_frame:
1721 
1722  s->spatial_decomposition_count= 5;
1723 
1724  while( !(width >>(s->chroma_h_shift + s->spatial_decomposition_count))
1725  || !(height>>(s->chroma_v_shift + s->spatial_decomposition_count)))
1726  s->spatial_decomposition_count--;
1727 
1728  if (s->spatial_decomposition_count <= 0) {
1729  av_log(avctx, AV_LOG_ERROR, "Resolution too low\n");
1730  return AVERROR(EINVAL);
1731  }
1732 
1733  s->m.pict_type = pic->pict_type;
1734  s->qbias = pic->pict_type == AV_PICTURE_TYPE_P ? 2 : 0;
1735 
1737 
1738  if(s->last_spatial_decomposition_count != s->spatial_decomposition_count){
1739  for(plane_index=0; plane_index < s->nb_planes; plane_index++){
1740  calculate_visual_weight(s, &s->plane[plane_index]);
1741  }
1742  }
1743 
1744  encode_header(s);
1745  s->m.misc_bits = 8*(s->c.bytestream - s->c.bytestream_start);
1746  encode_blocks(s, 1);
1747  s->m.mv_bits = 8*(s->c.bytestream - s->c.bytestream_start) - s->m.misc_bits;
1748 
1749  for(plane_index=0; plane_index < s->nb_planes; plane_index++){
1750  Plane *p= &s->plane[plane_index];
1751  int w= p->width;
1752  int h= p->height;
1753  int x, y;
1754 // int bits= put_bits_count(&s->c.pb);
1755 
1756  if (!s->memc_only) {
1757  //FIXME optimize
1758  if(pict->data[plane_index]) //FIXME gray hack
1759  for(y=0; y<h; y++){
1760  for(x=0; x<w; x++){
1761  s->spatial_idwt_buffer[y*w + x]= pict->data[plane_index][y*pict->linesize[plane_index] + x]<<FRAC_BITS;
1762  }
1763  }
1764  predict_plane(s, s->spatial_idwt_buffer, plane_index, 0);
1765 
1766 #if FF_API_PRIVATE_OPT
1768  if(s->avctx->scenechange_threshold)
1769  s->scenechange_threshold = s->avctx->scenechange_threshold;
1771 #endif
1772 
1773  if( plane_index==0
1774  && pic->pict_type == AV_PICTURE_TYPE_P
1775  && !(avctx->flags&AV_CODEC_FLAG_PASS2)
1776  && s->m.me.scene_change_score > s->scenechange_threshold){
1778  ff_build_rac_states(c, (1LL<<32)/20, 256-8);
1780  s->keyframe=1;
1781  s->current_picture->key_frame=1;
1782  goto redo_frame;
1783  }
1784 
1785  if(s->qlog == LOSSLESS_QLOG){
1786  for(y=0; y<h; y++){
1787  for(x=0; x<w; x++){
1788  s->spatial_dwt_buffer[y*w + x]= (s->spatial_idwt_buffer[y*w + x] + (1<<(FRAC_BITS-1))-1)>>FRAC_BITS;
1789  }
1790  }
1791  }else{
1792  for(y=0; y<h; y++){
1793  for(x=0; x<w; x++){
1794  s->spatial_dwt_buffer[y*w + x]= s->spatial_idwt_buffer[y*w + x] * (1 << ENCODER_EXTRA_BITS);
1795  }
1796  }
1797  }
1798 
1799  ff_spatial_dwt(s->spatial_dwt_buffer, s->temp_dwt_buffer, w, h, w, s->spatial_decomposition_type, s->spatial_decomposition_count);
1800 
1801  if(s->pass1_rc && plane_index==0){
1802  int delta_qlog = ratecontrol_1pass(s, pic);
1803  if (delta_qlog <= INT_MIN)
1804  return -1;
1805  if(delta_qlog){
1806  //reordering qlog in the bitstream would eliminate this reset
1808  memcpy(s->header_state, rc_header_bak, sizeof(s->header_state));
1809  memcpy(s->block_state, rc_block_bak, sizeof(s->block_state));
1810  encode_header(s);
1811  encode_blocks(s, 0);
1812  }
1813  }
1814 
1815  for(level=0; level<s->spatial_decomposition_count; level++){
1816  for(orientation=level ? 1 : 0; orientation<4; orientation++){
1817  SubBand *b= &p->band[level][orientation];
1818 
1819  quantize(s, b, b->ibuf, b->buf, b->stride, s->qbias);
1820  if(orientation==0)
1821  decorrelate(s, b, b->ibuf, b->stride, pic->pict_type == AV_PICTURE_TYPE_P, 0);
1822  if (!s->no_bitstream)
1823  encode_subband(s, b, b->ibuf, b->parent ? b->parent->ibuf : NULL, b->stride, orientation);
1824  av_assert0(b->parent==NULL || b->parent->stride == b->stride*2);
1825  if(orientation==0)
1826  correlate(s, b, b->ibuf, b->stride, 1, 0);
1827  }
1828  }
1829 
1830  for(level=0; level<s->spatial_decomposition_count; level++){
1831  for(orientation=level ? 1 : 0; orientation<4; orientation++){
1832  SubBand *b= &p->band[level][orientation];
1833 
1834  dequantize(s, b, b->ibuf, b->stride);
1835  }
1836  }
1837 
1838  ff_spatial_idwt(s->spatial_idwt_buffer, s->temp_idwt_buffer, w, h, w, s->spatial_decomposition_type, s->spatial_decomposition_count);
1839  if(s->qlog == LOSSLESS_QLOG){
1840  for(y=0; y<h; y++){
1841  for(x=0; x<w; x++){
1842  s->spatial_idwt_buffer[y*w + x]<<=FRAC_BITS;
1843  }
1844  }
1845  }
1846  predict_plane(s, s->spatial_idwt_buffer, plane_index, 1);
1847  }else{
1848  //ME/MC only
1849  if(pic->pict_type == AV_PICTURE_TYPE_I){
1850  for(y=0; y<h; y++){
1851  for(x=0; x<w; x++){
1852  s->current_picture->data[plane_index][y*s->current_picture->linesize[plane_index] + x]=
1853  pict->data[plane_index][y*pict->linesize[plane_index] + x];
1854  }
1855  }
1856  }else{
1857  memset(s->spatial_idwt_buffer, 0, sizeof(IDWTELEM)*w*h);
1858  predict_plane(s, s->spatial_idwt_buffer, plane_index, 1);
1859  }
1860  }
1861  if(s->avctx->flags&AV_CODEC_FLAG_PSNR){
1862  int64_t error= 0;
1863 
1864  if(pict->data[plane_index]) //FIXME gray hack
1865  for(y=0; y<h; y++){
1866  for(x=0; x<w; x++){
1867  int d= s->current_picture->data[plane_index][y*s->current_picture->linesize[plane_index] + x] - pict->data[plane_index][y*pict->linesize[plane_index] + x];
1868  error += d*d;
1869  }
1870  }
1871  s->avctx->error[plane_index] += error;
1872  s->encoding_error[plane_index] = error;
1873  }
1874 
1875  }
1876  emms_c();
1877 
1879 
1880  ff_snow_release_buffer(avctx);
1881 
1882  s->current_picture->coded_picture_number = avctx->frame_number;
1883  s->current_picture->pict_type = pic->pict_type;
1884  s->current_picture->quality = pic->quality;
1885  s->m.frame_bits = 8*(s->c.bytestream - s->c.bytestream_start);
1886  s->m.p_tex_bits = s->m.frame_bits - s->m.misc_bits - s->m.mv_bits;
1887  s->m.current_picture.f->display_picture_number =
1888  s->m.current_picture.f->coded_picture_number = avctx->frame_number;
1889  s->m.current_picture.f->quality = pic->quality;
1890  s->m.total_bits += 8*(s->c.bytestream - s->c.bytestream_start);
1891  if(s->pass1_rc)
1892  if (ff_rate_estimate_qscale(&s->m, 0) < 0)
1893  return -1;
1894  if(avctx->flags&AV_CODEC_FLAG_PASS1)
1895  ff_write_pass1_stats(&s->m);
1896  s->m.last_pict_type = s->m.pict_type;
1897 #if FF_API_STAT_BITS
1899  avctx->frame_bits = s->m.frame_bits;
1900  avctx->mv_bits = s->m.mv_bits;
1901  avctx->misc_bits = s->m.misc_bits;
1902  avctx->p_tex_bits = s->m.p_tex_bits;
1904 #endif
1905 
1906  emms_c();
1907 
1908  ff_side_data_set_encoder_stats(pkt, s->current_picture->quality,
1909  s->encoding_error,
1910  (s->avctx->flags&AV_CODEC_FLAG_PSNR) ? 4 : 0,
1911  s->current_picture->pict_type);
1912 
1913 #if FF_API_ERROR_FRAME
1915  memcpy(s->current_picture->error, s->encoding_error, sizeof(s->encoding_error));
1917 #endif
1918 
1919  pkt->size = ff_rac_terminate(c, 0);
1920  if (s->current_picture->key_frame)
1922  *got_packet = 1;
1923 
1924  return 0;
1925 }
1926 
1928 {
1929  SnowContext *s = avctx->priv_data;
1930 
1933  av_frame_free(&s->input_picture);
1934  av_freep(&avctx->stats_out);
1935 
1936  return 0;
1937 }
1938 
1939 #define OFFSET(x) offsetof(SnowContext, x)
1940 #define VE AV_OPT_FLAG_VIDEO_PARAM | AV_OPT_FLAG_ENCODING_PARAM
1941 static const AVOption options[] = {
1942  {"motion_est", "motion estimation algorithm", OFFSET(motion_est), AV_OPT_TYPE_INT, {.i64 = FF_ME_EPZS }, FF_ME_ZERO, FF_ME_ITER, VE, "motion_est" },
1943  { "zero", NULL, 0, AV_OPT_TYPE_CONST, { .i64 = FF_ME_ZERO }, 0, 0, VE, "motion_est" },
1944  { "epzs", NULL, 0, AV_OPT_TYPE_CONST, { .i64 = FF_ME_EPZS }, 0, 0, VE, "motion_est" },
1945  { "xone", NULL, 0, AV_OPT_TYPE_CONST, { .i64 = FF_ME_XONE }, 0, 0, VE, "motion_est" },
1946  { "iter", NULL, 0, AV_OPT_TYPE_CONST, { .i64 = FF_ME_ITER }, 0, 0, VE, "motion_est" },
1947  { "memc_only", "Only do ME/MC (I frames -> ref, P frame -> ME+MC).", OFFSET(memc_only), AV_OPT_TYPE_BOOL, { .i64 = 0 }, 0, 1, VE },
1948  { "no_bitstream", "Skip final bitstream writeout.", OFFSET(no_bitstream), AV_OPT_TYPE_BOOL, { .i64 = 0 }, 0, 1, VE },
1949  { "intra_penalty", "Penalty for intra blocks in block decission", OFFSET(intra_penalty), AV_OPT_TYPE_INT, { .i64 = 0 }, 0, INT_MAX, VE },
1950  { "iterative_dia_size", "Dia size for the iterative ME", OFFSET(iterative_dia_size), AV_OPT_TYPE_INT, { .i64 = 0 }, 0, INT_MAX, VE },
1951  { "sc_threshold", "Scene change threshold", OFFSET(scenechange_threshold), AV_OPT_TYPE_INT, { .i64 = 0 }, INT_MIN, INT_MAX, VE },
1952  { "pred", "Spatial decomposition type", OFFSET(pred), AV_OPT_TYPE_INT, { .i64 = 0 }, DWT_97, DWT_53, VE, "pred" },
1953  { "dwt97", NULL, 0, AV_OPT_TYPE_CONST, { .i64 = 0 }, INT_MIN, INT_MAX, VE, "pred" },
1954  { "dwt53", NULL, 0, AV_OPT_TYPE_CONST, { .i64 = 1 }, INT_MIN, INT_MAX, VE, "pred" },
1955  { "rc_eq", "Set rate control equation. When computing the expression, besides the standard functions "
1956  "defined in the section 'Expression Evaluation', the following functions are available: "
1957  "bits2qp(bits), qp2bits(qp). Also the following constants are available: iTex pTex tex mv "
1958  "fCode iCount mcVar var isI isP isB avgQP qComp avgIITex avgPITex avgPPTex avgBPTex avgTex.",
1959  OFFSET(m.rc_eq), AV_OPT_TYPE_STRING, { .str = NULL }, 0, 0, VE },
1960  { NULL },
1961 };
1962 
1963 static const AVClass snowenc_class = {
1964  .class_name = "snow encoder",
1965  .item_name = av_default_item_name,
1966  .option = options,
1967  .version = LIBAVUTIL_VERSION_INT,
1968 };
1969 
1971  .name = "snow",
1972  .long_name = NULL_IF_CONFIG_SMALL("Snow"),
1973  .type = AVMEDIA_TYPE_VIDEO,
1974  .id = AV_CODEC_ID_SNOW,
1975  .priv_data_size = sizeof(SnowContext),
1976  .init = encode_init,
1977  .encode2 = encode_frame,
1978  .close = encode_end,
1979  .pix_fmts = (const enum AVPixelFormat[]){
1983  },
1984  .priv_class = &snowenc_class,
1985  .caps_internal = FF_CODEC_CAP_INIT_THREADSAFE |
1987 };
static uint32_t inverse(uint32_t v)
find multiplicative inverse modulo 2 ^ 32
Definition: asfcrypt.c:35
#define av_always_inline
Definition: attributes.h:45
#define av_cold
Definition: attributes.h:88
uint8_t
#define av_assert2(cond)
assert() equivalent, that does lie in speed critical code.
Definition: avassert.h:64
#define av_assert1(cond)
assert() equivalent, that does not lie in speed critical code.
Definition: avassert.h:53
#define av_assert0(cond)
assert() equivalent, that is always enabled.
Definition: avassert.h:37
Libavcodec external API header.
#define FF_CMP_DCT264
Definition: avcodec.h:955
#define FF_CMP_W53
Definition: avcodec.h:952
#define FF_CMP_SSE
Definition: avcodec.h:942
#define FF_CMP_DCT
Definition: avcodec.h:944
#define FF_CMP_W97
Definition: avcodec.h:953
#define FF_CMP_BIT
Definition: avcodec.h:946
#define FF_CMP_SATD
Definition: avcodec.h:943
#define FF_CMP_NSSE
Definition: avcodec.h:951
#define FF_CMP_SAD
Definition: avcodec.h:941
#define FF_CMP_PSNR
Definition: avcodec.h:945
#define FF_CMP_RD
Definition: avcodec.h:947
int ff_side_data_set_encoder_stats(AVPacket *pkt, int quality, int64_t *error, int error_count, int pict_type)
Definition: avpacket.c:820
static av_cold int init(AVCodecContext *avctx)
Definition: avrndec.c:31
#define s(width, name)
Definition: cbs_vp9.c:257
static struct @321 state
#define MB_SIZE
Definition: cinepakenc.c:54
#define FFMIN(a, b)
Definition: common.h:105
#define AV_CEIL_RSHIFT(a, b)
Definition: common.h:58
#define av_clip
Definition: common.h:122
#define ROUNDED_DIV(a, b)
Definition: common.h:56
#define FFMAX(a, b)
Definition: common.h:103
#define av_clip_uint8
Definition: common.h:128
#define FFABS(a)
Absolute value, Note, INT_MIN / INT64_MIN result in undefined behavior as they are not representable ...
Definition: common.h:72
#define NULL
Definition: coverity.c:32
#define abs(x)
Definition: cuda_runtime.h:35
int DWTELEM
Definition: dirac_dwt.h:26
short IDWTELEM
Definition: dirac_dwt.h:27
int ff_alloc_packet2(AVCodecContext *avctx, AVPacket *avpkt, int64_t size, int64_t min_size)
Check AVPacket size and/or allocate data.
Definition: encode.c:33
double value
Definition: eval.c:98
int
static av_noinline void put_symbol(RangeCoder *c, uint8_t *state, int v, int is_signed)
Definition: ffv1enc.c:232
#define put_rac(C, S, B)
#define FRAC_BITS
@ AV_OPT_TYPE_CONST
Definition: opt.h:234
@ AV_OPT_TYPE_INT
Definition: opt.h:225
@ AV_OPT_TYPE_BOOL
Definition: opt.h:242
@ AV_OPT_TYPE_STRING
Definition: opt.h:229
#define AV_CODEC_FLAG_QPEL
Use qpel MC.
Definition: avcodec.h:287
#define AV_CODEC_FLAG_PASS2
Use internal 2pass ratecontrol in second pass mode.
Definition: avcodec.h:300
#define AV_CODEC_FLAG_QSCALE
Use fixed qscale.
Definition: avcodec.h:275
#define AV_CODEC_FLAG_PASS1
Use internal 2pass ratecontrol in first pass mode.
Definition: avcodec.h:296
#define AV_CODEC_FLAG_PSNR
error[?] variables will be set during encoding.
Definition: avcodec.h:312
#define AV_CODEC_FLAG_4MV
4 MV per MB allowed / advanced prediction for H.263.
Definition: avcodec.h:279
@ AV_CODEC_ID_SNOW
Definition: codec_id.h:262
#define AV_INPUT_BUFFER_MIN_SIZE
minimum encoding buffer size Used to avoid some checks during header writing.
Definition: avcodec.h:222
#define AV_PKT_FLAG_KEY
The packet contains a keyframe.
Definition: packet.h:410
#define FF_LAMBDA_SCALE
Definition: avutil.h:226
#define FF_LAMBDA_SHIFT
Definition: avutil.h:225
#define FF_QP2LAMBDA
factor to convert from H.263 QP to lambda
Definition: avutil.h:227
#define AVERROR_PATCHWELCOME
Not yet implemented in FFmpeg, patches welcome.
Definition: error.h:62
#define AVERROR(e)
Definition: error.h:43
void av_frame_unref(AVFrame *frame)
Unreference all the buffers referenced by frame and reset the frame fields.
Definition: frame.c:553
int av_frame_ref(AVFrame *dst, const AVFrame *src)
Set up a new reference to the data described by the source frame.
Definition: frame.c:443
void av_frame_free(AVFrame **frame)
Free the frame and any dynamically allocated objects in it, e.g.
Definition: frame.c:203
AVFrame * av_frame_alloc(void)
Allocate an AVFrame and set its fields to default values.
Definition: frame.c:190
int av_frame_make_writable(AVFrame *frame)
Ensure that the frame data is writable, avoiding data copy if possible.
Definition: frame.c:611
#define AV_LOG_DEBUG
Stuff which is only useful for libav* developers.
Definition: log.h:215
#define AV_LOG_ERROR
Something went wrong and cannot losslessly be recovered.
Definition: log.h:194
const char * av_default_item_name(void *ptr)
Return the context name.
Definition: log.c:235
void * av_mallocz(size_t size)
Allocate a memory block with alignment suitable for all memory accesses (including vectors if availab...
Definition: mem.c:237
void * av_mallocz_array(size_t nmemb, size_t size)
Allocate a memory block for an array with av_mallocz().
Definition: mem.c:190
@ AVMEDIA_TYPE_VIDEO
Definition: avutil.h:201
@ AV_PICTURE_TYPE_I
Intra.
Definition: avutil.h:274
@ AV_PICTURE_TYPE_P
Predicted.
Definition: avutil.h:275
#define LIBAVUTIL_VERSION_INT
Definition: version.h:85
int index
Definition: gxfenc.c:89
void ff_h263_encode_init(MpegEncContext *s)
Definition: ituh263enc.c:757
cl_device_type type
int i
Definition: input.c:407
#define av_log2
Definition: intmath.h:83
static void pred_mv(DiracBlock *block, int stride, int x, int y, int ref)
Definition: diracdec.c:1390
#define FF_CODEC_CAP_INIT_THREADSAFE
The codec does not modify any global variables in the init function, allowing to call the init functi...
Definition: internal.h:41
#define FF_CODEC_CAP_INIT_CLEANUP
The codec allows calling the close function for deallocation even if the init function returned a fai...
Definition: internal.h:49
common internal API header
#define NULL_IF_CONFIG_SMALL(x)
Return NULL if CONFIG_SMALL is true, otherwise the argument without modification.
Definition: internal.h:117
#define FF_DISABLE_DEPRECATION_WARNINGS
Definition: internal.h:83
#define FF_ENABLE_DEPRECATION_WARNINGS
Definition: internal.h:84
#define emms_c()
Definition: internal.h:54
static enum AVPixelFormat pix_fmts[]
Definition: libkvazaar.c:309
Replacements for frequently missing libm functions.
#define log2(x)
Definition: libm.h:404
uint8_t w
Definition: llviddspenc.c:39
int stride
Definition: mace.c:144
#define mid_pred
Definition: mathops.h:97
#define ff_sqrt
Definition: mathops.h:206
const uint32_t ff_square_tab[512]
Definition: me_cmp.c:34
void ff_set_cmp(MECmpContext *c, me_cmp_func *cmp, int type)
Definition: me_cmp.c:475
int ff_init_me(MpegEncContext *s)
Definition: motion_est.c:306
static void init_ref(MotionEstContext *c, uint8_t *src[3], uint8_t *ref[3], uint8_t *ref2[3], int x, int y, int ref_index)
Definition: motion_est.c:83
#define ME_MAP_SIZE
Definition: motion_est.h:38
int ff_epzs_motion_search(struct MpegEncContext *s, int *mx_ptr, int *my_ptr, int P[10][2], int src_index, int ref_index, int16_t(*last_mv)[2], int ref_mv_scale, int size, int h)
#define FF_ME_EPZS
Definition: motion_est.h:41
#define FF_ME_XONE
Definition: motion_est.h:42
int ff_get_mb_score(struct MpegEncContext *s, int mx, int my, int src_index, int ref_index, int size, int h, int add_rate)
#define FF_ME_ZERO
Definition: motion_est.h:40
#define MAX_DMV
Definition: motion_est.h:37
#define P
#define EDGE_WIDTH
Definition: mpegpicture.h:33
@ FMT_H263
Definition: mpegutils.h:126
mpegvideo header.
av_cold void ff_mpegvideoencdsp_init(MpegvideoEncDSPContext *c, AVCodecContext *avctx)
#define EDGE_BOTTOM
#define EDGE_TOP
AVOptions.
int av_pix_fmt_get_chroma_sub_sample(enum AVPixelFormat pix_fmt, int *h_shift, int *v_shift)
Utility function to access log2_chroma_w log2_chroma_h from the pixel format AVPixFmtDescriptor.
Definition: pixdesc.c:2601
AVPixelFormat
Pixel format.
Definition: pixfmt.h:64
@ AV_PIX_FMT_NONE
Definition: pixfmt.h:65
@ AV_PIX_FMT_YUV420P
planar YUV 4:2:0, 12bpp, (1 Cr & Cb sample per 2x2 Y samples)
Definition: pixfmt.h:66
@ AV_PIX_FMT_GRAY8
Y , 8bpp.
Definition: pixfmt.h:74
@ AV_PIX_FMT_YUV410P
planar YUV 4:1:0, 9bpp, (1 Cr & Cb sample per 4x4 Y samples)
Definition: pixfmt.h:72
@ AV_PIX_FMT_YUV444P
planar YUV 4:4:4, 24bpp, (1 Cr & Cb sample per 1x1 Y samples)
Definition: pixfmt.h:71
int ff_rac_terminate(RangeCoder *c, int version)
Terminates the range coder.
Definition: rangecoder.c:109
void ff_build_rac_states(RangeCoder *c, int factor, int max_p)
Definition: rangecoder.c:68
av_cold void ff_init_range_encoder(RangeCoder *c, uint8_t *buf, int buf_size)
Definition: rangecoder.c:42
Range coder.
static int get_rac_count(RangeCoder *c)
Definition: rangecoder.h:87
av_cold int ff_rate_control_init(MpegEncContext *s)
Definition: ratecontrol.c:472
av_cold void ff_rate_control_uninit(MpegEncContext *s)
Definition: ratecontrol.c:672
float ff_rate_estimate_qscale(MpegEncContext *s, int dry_run)
Definition: ratecontrol.c:868
void ff_write_pass1_stats(MpegEncContext *s)
Definition: ratecontrol.c:38
#define tb
Definition: regdef.h:68
#define t2
Definition: regdef.h:30
static int square(int x)
Definition: roqvideoenc.c:193
static const float pred[4]
Definition: siprdata.h:259
av_cold int ff_snow_common_init(AVCodecContext *avctx)
Definition: snow.c:439
void ff_snow_pred_block(SnowContext *s, uint8_t *dst, uint8_t *tmp, ptrdiff_t stride, int sx, int sy, int b_w, int b_h, const BlockNode *block, int plane_index, int w, int h)
Definition: snow.c:328
int ff_snow_get_buffer(SnowContext *s, AVFrame *frame)
Definition: snow.c:70
void ff_snow_release_buffer(AVCodecContext *avctx)
Definition: snow.c:646
void ff_snow_reset_contexts(SnowContext *s)
Definition: snow.c:97
int ff_snow_common_init_after_header(AVCodecContext *avctx)
Definition: snow.c:521
int ff_snow_frame_start(SnowContext *s)
Definition: snow.c:661
av_cold void ff_snow_common_end(SnowContext *s)
Definition: snow.c:699
int ff_snow_alloc_blocks(SnowContext *s)
Definition: snow.c:111
#define BLOCK_OPT
Block needs no checks in this round of iterative motion estiation.
Definition: snow.h:59
#define LOG2_MB_SIZE
Definition: snow.h:73
#define QROOT
Definition: snow.h:44
static av_always_inline void predict_plane(SnowContext *s, IDWTELEM *buf, int plane_index, int add)
Definition: snow.h:456
#define MID_STATE
Definition: snow.h:40
#define QSHIFT
Definition: snow.h:43
#define FF_ME_ITER
Definition: snow.h:38
#define QEXPSHIFT
Definition: snow.h:508
static void set_blocks(SnowContext *s, int level, int x, int y, int l, int cb, int cr, int mx, int my, int ref, int type)
Definition: snow.h:463
const uint8_t *const ff_obmc_tab[4]
Definition: snowdata.h:123
static void put_symbol2(RangeCoder *c, uint8_t *state, int v, int log2)
Definition: snow.h:564
uint8_t ff_qexp[QROOT]
Definition: snowdata.h:128
#define ENCODER_EXTRA_BITS
Definition: snow.h:75
#define BLOCK_INTRA
Intra block, inter otherwise.
Definition: snow.h:58
#define LOSSLESS_QLOG
Definition: snow.h:45
#define QBIAS_SHIFT
Definition: snow.h:164
#define MAX_REF_FRAMES
Definition: snow.h:47
static av_always_inline int same_block(BlockNode *a, BlockNode *b)
Definition: snow.h:271
#define LOG2_OBMC_MAX
Definition: snow.h:49
const int8_t ff_quant3bA[256]
Definition: snowdata.h:104
static av_always_inline void add_yblock(SnowContext *s, int sliced, slice_buffer *sb, IDWTELEM *dst, uint8_t *dst8, const uint8_t *obmc, int src_x, int src_y, int b_w, int b_h, int w, int h, int dst_stride, int src_stride, int obmc_stride, int b_x, int b_y, int add, int offset_dst, int plane_index)
Definition: snow.h:281
#define ME_CACHE_SIZE
Definition: snow.h:172
static const BlockNode null_block
Definition: snow.h:64
void ff_spatial_idwt(IDWTELEM *buffer, IDWTELEM *temp, int width, int height, int stride, int type, int decomposition_count)
Definition: snow_dwt.c:731
int ff_w53_32_c(struct MpegEncContext *v, uint8_t *pix1, uint8_t *pix2, ptrdiff_t line_size, int h)
Definition: snow_dwt.c:832
void ff_spatial_dwt(DWTELEM *buffer, DWTELEM *temp, int width, int height, int stride, int type, int decomposition_count)
Definition: snow_dwt.c:319
int ff_w97_32_c(struct MpegEncContext *v, uint8_t *pix1, uint8_t *pix2, ptrdiff_t line_size, int h)
Definition: snow_dwt.c:837
#define DWT_97
Definition: snow_dwt.h:68
#define DWT_53
Definition: snow_dwt.h:69
static int get_4block_rd(SnowContext *s, int mb_x, int mb_y, int plane_index)
Definition: snowenc.c:710
static av_always_inline int check_4block_inter(SnowContext *s, int mb_x, int mb_y, int p0, int p1, int ref, int *best_rd)
Definition: snowenc.c:952
static int qscale2qlog(int qscale)
Definition: snowenc.c:1484
static const AVClass snowenc_class
Definition: snowenc.c:1963
static int get_penalty_factor(int lambda, int lambda2, int type)
Definition: snowenc.c:197
static const AVOption options[]
Definition: snowenc.c:1941
#define VE
Definition: snowenc.c:1940
static int get_block_rd(SnowContext *s, int mb_x, int mb_y, int plane_index, uint8_t(*obmc_edged)[MB_SIZE *2])
Definition: snowenc.c:609
static int encode_subband_c0run(SnowContext *s, SubBand *b, const IDWTELEM *src, const IDWTELEM *parent, int stride, int orientation)
Definition: snowenc.c:779
static void encode_q_branch2(SnowContext *s, int level, int x, int y)
Definition: snowenc.c:457
#define P_TOP
Definition: snowenc.c:223
static void calculate_visual_weight(SnowContext *s, Plane *p)
Definition: snowenc.c:1541
static void correlate(SnowContext *s, SubBand *b, IDWTELEM *src, int stride, int inverse, int use_median)
Definition: snowenc.c:1354
static int get_block_bits(SnowContext *s, int x, int y, int w)
Definition: snowenc.c:571
#define P_MEDIAN
Definition: snowenc.c:225
static av_cold int encode_init(AVCodecContext *avctx)
Definition: snowenc.c:38
static av_always_inline int check_block(SnowContext *s, int mb_x, int mb_y, int p[3], int intra, uint8_t(*obmc_edged)[MB_SIZE *2], int *best_rd)
Definition: snowenc.c:906
static int pix_sum(uint8_t *pix, int line_size, int w, int h)
Definition: snowenc.c:165
static int ratecontrol_1pass(SnowContext *s, AVFrame *pict)
Definition: snowenc.c:1489
static int get_dc(SnowContext *s, int mb_x, int mb_y, int plane_index)
Definition: snowenc.c:513
static int encode_frame(AVCodecContext *avctx, AVPacket *pkt, const AVFrame *pict, int *got_packet)
Definition: snowenc.c:1571
static void encode_qlogs(SnowContext *s)
Definition: snowenc.c:1378
static av_always_inline int check_block_inter(SnowContext *s, int mb_x, int mb_y, int p0, int p1, uint8_t(*obmc_edged)[MB_SIZE *2], int *best_rd)
Definition: snowenc.c:947
#define P_LEFT
Definition: snowenc.c:222
static int encode_q_branch(SnowContext *s, int level, int x, int y)
Definition: snowenc.c:229
static void decorrelate(SnowContext *s, SubBand *b, IDWTELEM *src, int stride, int inverse, int use_median)
Definition: snowenc.c:1330
static av_cold int encode_end(AVCodecContext *avctx)
Definition: snowenc.c:1927
static void encode_header(SnowContext *s)
Definition: snowenc.c:1391
AVCodec ff_snow_encoder
Definition: snowenc.c:1970
#define OFFSET(x)
Definition: snowenc.c:1939
static void dequantize(SnowContext *s, SubBand *b, IDWTELEM *src, int stride)
Definition: snowenc.c:1308
static void quantize(SnowContext *s, SubBand *b, IDWTELEM *dst, DWTELEM *src, int stride, int bias)
Definition: snowenc.c:1247
static void iterative_me(SnowContext *s)
Definition: snowenc.c:998
static void update_last_header_values(SnowContext *s)
Definition: snowenc.c:1464
static int pix_norm1(uint8_t *pix, int line_size, int w)
Definition: snowenc.c:181
#define P_TOPRIGHT
Definition: snowenc.c:224
static void encode_blocks(SnowContext *s, int search)
Definition: snowenc.c:1225
static int encode_subband(SnowContext *s, SubBand *b, const IDWTELEM *src, const IDWTELEM *parent, int stride, int orientation)
Definition: snowenc.c:899
static int shift(int a, int b)
Definition: sonic.c:82
Describe the class of an AVClass context structure.
Definition: log.h:67
const char * class_name
The name of the class; usually it is the same name as the context structure type to which the AVClass...
Definition: log.h:72
main external API structure.
Definition: avcodec.h:536
enum AVPixelFormat pix_fmt
Pixel format, see AV_PIX_FMT_xxx.
Definition: avcodec.h:746
int width
picture width / height.
Definition: avcodec.h:709
char * stats_out
pass1 encoding statistics output buffer
Definition: avcodec.h:1557
int global_quality
Global quality for codecs which cannot change it per frame.
Definition: avcodec.h:602
attribute_deprecated int frame_bits
Definition: avcodec.h:1549
attribute_deprecated int mv_bits
Definition: avcodec.h:1531
int mb_lmax
maximum MB Lagrange multiplier
Definition: avcodec.h:1090
int dia_size
ME diamond size & shape.
Definition: avcodec.h:964
attribute_deprecated AVFrame * coded_frame
the picture in the bitstream
Definition: avcodec.h:1764
attribute_deprecated int misc_bits
Definition: avcodec.h:1545
int64_t bit_rate
the average bitrate
Definition: avcodec.h:586
int gop_size
the number of pictures in a group of pictures, or 0 for intra_only
Definition: avcodec.h:731
int frame_number
Frame counter, set by libavcodec.
Definition: avcodec.h:1227
int refs
number of reference frames
Definition: avcodec.h:1124
int mb_lmin
minimum MB Lagrange multiplier
Definition: avcodec.h:1083
int flags
AV_CODEC_FLAG_*.
Definition: avcodec.h:616
attribute_deprecated int prediction_method
Definition: avcodec.h:895
attribute_deprecated int p_tex_bits
Definition: avcodec.h:1537
void * priv_data
Definition: avcodec.h:563
AVCodec.
Definition: codec.h:197
const char * name
Name of the codec implementation.
Definition: codec.h:204
This structure describes decoded (raw) audio or video data.
Definition: frame.h:318
int64_t pts
Presentation timestamp in time_base units (time when frame should be shown to user).
Definition: frame.h:411
uint8_t * data[AV_NUM_DATA_POINTERS]
pointer to the picture/channel planes.
Definition: frame.h:332
int quality
quality (between 1 (good) and FF_LAMBDA_MAX (bad))
Definition: frame.h:441
int linesize[AV_NUM_DATA_POINTERS]
For video, size in bytes of each picture line.
Definition: frame.h:349
enum AVPictureType pict_type
Picture type of the frame.
Definition: frame.h:401
AVOption.
Definition: opt.h:248
This structure stores compressed data.
Definition: packet.h:346
int flags
A combination of AV_PKT_FLAG values.
Definition: packet.h:375
int size
Definition: packet.h:370
uint8_t * data
Definition: packet.h:369
Definition: snow.h:51
uint8_t ref
Reference frame index.
Definition: snow.h:54
int16_t mx
Motion vector component X, see mv_scale.
Definition: snow.h:52
uint8_t color[3]
Color for intra.
Definition: snow.h:55
int16_t my
Motion vector component Y, see mv_scale.
Definition: snow.h:53
uint8_t type
Bitfield of BLOCK_*.
Definition: snow.h:56
uint8_t level
Definition: snow.h:61
Motion estimation context.
Definition: motion_est.h:47
Definition: cfhd.h:120
int last_htaps
Definition: snow.h:109
SubBand band[DWT_LEVELS_3D][4]
Definition: cfhd.h:133
int htaps
Definition: snow.h:104
int last_diag_mc
Definition: snow.h:111
int width
Definition: cfhd.h:121
int8_t last_hcoeff[HTAPS_MAX/2]
Definition: snow.h:110
int height
Definition: cfhd.h:122
int8_t hcoeff[HTAPS_MAX/2]
Definition: snow.h:105
int diag_mc
Definition: snow.h:106
Definition: cfhd.h:111
int qlog
log(qscale)/log[2^(1/6)]
Definition: snow.h:88
uint8_t run
Definition: svq3.c:205
uint8_t level
Definition: svq3.c:206
#define lrint
Definition: tablegen.h:53
#define av_freep(p)
#define av_log(a,...)
static void error(const char *err)
static uint8_t tmp[11]
Definition: aes_ctr.c:27
#define src
Definition: vp8dsp.c:255
static int16_t block[64]
Definition: dct.c:116
static int ref[MAX_W *MAX_W]
Definition: jpeg2000dwt.c:107
AVPacket * pkt
Definition: movenc.c:59
enum AVPictureType last_picture
Definition: movenc.c:69
#define height
#define width
int size
#define pass
Definition: tx_template.c:347
const char * b
Definition: vf_curves.c:118
const char * r
Definition: vf_curves.c:116
static float search(FOCContext *foc, int pass, int maxpass, int xmin, int xmax, int ymin, int ymax, int *best_x, int *best_y, float best_score)
Definition: vf_find_rect.c:155
static double cr(void *priv, double x, double y)
Definition: vf_geq.c:216
static double cb(void *priv, double x, double y)
Definition: vf_geq.c:215
static double c[64]