FFmpeg  4.4.4
wmadec.c
Go to the documentation of this file.
1 /*
2  * WMA compatible decoder
3  * Copyright (c) 2002 The FFmpeg Project
4  *
5  * This file is part of FFmpeg.
6  *
7  * FFmpeg is free software; you can redistribute it and/or
8  * modify it under the terms of the GNU Lesser General Public
9  * License as published by the Free Software Foundation; either
10  * version 2.1 of the License, or (at your option) any later version.
11  *
12  * FFmpeg is distributed in the hope that it will be useful,
13  * but WITHOUT ANY WARRANTY; without even the implied warranty of
14  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
15  * Lesser General Public License for more details.
16  *
17  * You should have received a copy of the GNU Lesser General Public
18  * License along with FFmpeg; if not, write to the Free Software
19  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
20  */
21 
22 /**
23  * @file
24  * WMA compatible decoder.
25  * This decoder handles Microsoft Windows Media Audio data, versions 1 & 2.
26  * WMA v1 is identified by audio format 0x160 in Microsoft media files
27  * (ASF/AVI/WAV). WMA v2 is identified by audio format 0x161.
28  *
29  * To use this decoder, a calling application must supply the extra data
30  * bytes provided with the WMA data. These are the extra, codec-specific
31  * bytes at the end of a WAVEFORMATEX data structure. Transmit these bytes
32  * to the decoder using the extradata[_size] fields in AVCodecContext. There
33  * should be 4 extra bytes for v1 data and 6 extra bytes for v2 data.
34  */
35 
36 #include "libavutil/attributes.h"
37 #include "libavutil/ffmath.h"
38 
39 #include "avcodec.h"
40 #include "internal.h"
41 #include "wma.h"
42 
43 #define EXPVLCBITS 8
44 #define EXPMAX ((19 + EXPVLCBITS - 1) / EXPVLCBITS)
45 
46 #define HGAINVLCBITS 9
47 #define HGAINMAX ((13 + HGAINVLCBITS - 1) / HGAINVLCBITS)
48 
49 static void wma_lsp_to_curve_init(WMACodecContext *s, int frame_len);
50 
51 #ifdef TRACE
52 static void dump_floats(WMACodecContext *s, const char *name,
53  int prec, const float *tab, int n)
54 {
55  int i;
56 
57  ff_tlog(s->avctx, "%s[%d]:\n", name, n);
58  for (i = 0; i < n; i++) {
59  if ((i & 7) == 0)
60  ff_tlog(s->avctx, "%4d: ", i);
61  ff_tlog(s->avctx, " %8.*f", prec, tab[i]);
62  if ((i & 7) == 7)
63  ff_tlog(s->avctx, "\n");
64  }
65  if ((i & 7) != 0)
66  ff_tlog(s->avctx, "\n");
67 }
68 #endif /* TRACE */
69 
71 {
72  WMACodecContext *s = avctx->priv_data;
73  int i, flags2;
74  uint8_t *extradata;
75 
76  if (!avctx->block_align) {
77  av_log(avctx, AV_LOG_ERROR, "block_align is not set\n");
78  return AVERROR(EINVAL);
79  }
80 
81  s->avctx = avctx;
82 
83  /* extract flag info */
84  flags2 = 0;
85  extradata = avctx->extradata;
86  if (avctx->codec->id == AV_CODEC_ID_WMAV1 && avctx->extradata_size >= 4)
87  flags2 = AV_RL16(extradata + 2);
88  else if (avctx->codec->id == AV_CODEC_ID_WMAV2 && avctx->extradata_size >= 6)
89  flags2 = AV_RL16(extradata + 4);
90 
91  s->use_exp_vlc = flags2 & 0x0001;
92  s->use_bit_reservoir = flags2 & 0x0002;
93  s->use_variable_block_len = flags2 & 0x0004;
94 
95  if (avctx->codec->id == AV_CODEC_ID_WMAV2 && avctx->extradata_size >= 8){
96  if (AV_RL16(extradata+4)==0xd && s->use_variable_block_len){
97  av_log(avctx, AV_LOG_WARNING, "Disabling use_variable_block_len, if this fails contact the ffmpeg developers and send us the file\n");
98  s->use_variable_block_len= 0; // this fixes issue1503
99  }
100  }
101 
102  for (i=0; i<MAX_CHANNELS; i++)
103  s->max_exponent[i] = 1.0;
104 
105  if (ff_wma_init(avctx, flags2) < 0)
106  return -1;
107 
108  /* init MDCT */
109  for (i = 0; i < s->nb_block_sizes; i++)
110  ff_mdct_init(&s->mdct_ctx[i], s->frame_len_bits - i + 1, 1, 1.0 / 32768.0);
111 
112  if (s->use_noise_coding) {
114  &ff_wma_hgain_hufftab[0][1], 2,
115  &ff_wma_hgain_hufftab[0][0], 2, 1, -18, 0, avctx);
116  }
117 
118  if (s->use_exp_vlc)
119  init_vlc(&s->exp_vlc, EXPVLCBITS, sizeof(ff_aac_scalefactor_bits), // FIXME move out of context
121  ff_aac_scalefactor_code, 4, 4, 0);
122  else
123  wma_lsp_to_curve_init(s, s->frame_len);
124 
126 
127  return 0;
128 }
129 
130 /**
131  * compute x^-0.25 with an exponent and mantissa table. We use linear
132  * interpolation to reduce the mantissa table size at a small speed
133  * expense (linear interpolation approximately doubles the number of
134  * bits of precision).
135  */
136 static inline float pow_m1_4(WMACodecContext *s, float x)
137 {
138  union {
139  float f;
140  unsigned int v;
141  } u, t;
142  unsigned int e, m;
143  float a, b;
144 
145  u.f = x;
146  e = u.v >> 23;
147  m = (u.v >> (23 - LSP_POW_BITS)) & ((1 << LSP_POW_BITS) - 1);
148  /* build interpolation scale: 1 <= t < 2. */
149  t.v = ((u.v << LSP_POW_BITS) & ((1 << 23) - 1)) | (127 << 23);
150  a = s->lsp_pow_m_table1[m];
151  b = s->lsp_pow_m_table2[m];
152  return s->lsp_pow_e_table[e] * (a + b * t.f);
153 }
154 
155 static av_cold void wma_lsp_to_curve_init(WMACodecContext *s, int frame_len)
156 {
157  float wdel, a, b;
158  int i, e, m;
159 
160  wdel = M_PI / frame_len;
161  for (i = 0; i < frame_len; i++)
162  s->lsp_cos_table[i] = 2.0f * cos(wdel * i);
163 
164  /* tables for x^-0.25 computation */
165  for (i = 0; i < 256; i++) {
166  e = i - 126;
167  s->lsp_pow_e_table[i] = exp2f(e * -0.25);
168  }
169 
170  /* NOTE: these two tables are needed to avoid two operations in
171  * pow_m1_4 */
172  b = 1.0;
173  for (i = (1 << LSP_POW_BITS) - 1; i >= 0; i--) {
174  m = (1 << LSP_POW_BITS) + i;
175  a = (float) m * (0.5 / (1 << LSP_POW_BITS));
176  a = 1/sqrt(sqrt(a));
177  s->lsp_pow_m_table1[i] = 2 * a - b;
178  s->lsp_pow_m_table2[i] = b - a;
179  b = a;
180  }
181 }
182 
183 /**
184  * NOTE: We use the same code as Vorbis here
185  * @todo optimize it further with SSE/3Dnow
186  */
187 static void wma_lsp_to_curve(WMACodecContext *s, float *out, float *val_max_ptr,
188  int n, float *lsp)
189 {
190  int i, j;
191  float p, q, w, v, val_max;
192 
193  val_max = 0;
194  for (i = 0; i < n; i++) {
195  p = 0.5f;
196  q = 0.5f;
197  w = s->lsp_cos_table[i];
198  for (j = 1; j < NB_LSP_COEFS; j += 2) {
199  q *= w - lsp[j - 1];
200  p *= w - lsp[j];
201  }
202  p *= p * (2.0f - w);
203  q *= q * (2.0f + w);
204  v = p + q;
205  v = pow_m1_4(s, v);
206  if (v > val_max)
207  val_max = v;
208  out[i] = v;
209  }
210  *val_max_ptr = val_max;
211 }
212 
213 /**
214  * decode exponents coded with LSP coefficients (same idea as Vorbis)
215  */
216 static void decode_exp_lsp(WMACodecContext *s, int ch)
217 {
218  float lsp_coefs[NB_LSP_COEFS];
219  int val, i;
220 
221  for (i = 0; i < NB_LSP_COEFS; i++) {
222  if (i == 0 || i >= 8)
223  val = get_bits(&s->gb, 3);
224  else
225  val = get_bits(&s->gb, 4);
226  lsp_coefs[i] = ff_wma_lsp_codebook[i][val];
227  }
228 
229  wma_lsp_to_curve(s, s->exponents[ch], &s->max_exponent[ch],
230  s->block_len, lsp_coefs);
231 }
232 
233 /** pow(10, i / 16.0) for i in -60..95 */
234 static const float pow_tab[] = {
235  1.7782794100389e-04, 2.0535250264571e-04,
236  2.3713737056617e-04, 2.7384196342644e-04,
237  3.1622776601684e-04, 3.6517412725484e-04,
238  4.2169650342858e-04, 4.8696752516586e-04,
239  5.6234132519035e-04, 6.4938163157621e-04,
240  7.4989420933246e-04, 8.6596432336006e-04,
241  1.0000000000000e-03, 1.1547819846895e-03,
242  1.3335214321633e-03, 1.5399265260595e-03,
243  1.7782794100389e-03, 2.0535250264571e-03,
244  2.3713737056617e-03, 2.7384196342644e-03,
245  3.1622776601684e-03, 3.6517412725484e-03,
246  4.2169650342858e-03, 4.8696752516586e-03,
247  5.6234132519035e-03, 6.4938163157621e-03,
248  7.4989420933246e-03, 8.6596432336006e-03,
249  1.0000000000000e-02, 1.1547819846895e-02,
250  1.3335214321633e-02, 1.5399265260595e-02,
251  1.7782794100389e-02, 2.0535250264571e-02,
252  2.3713737056617e-02, 2.7384196342644e-02,
253  3.1622776601684e-02, 3.6517412725484e-02,
254  4.2169650342858e-02, 4.8696752516586e-02,
255  5.6234132519035e-02, 6.4938163157621e-02,
256  7.4989420933246e-02, 8.6596432336007e-02,
257  1.0000000000000e-01, 1.1547819846895e-01,
258  1.3335214321633e-01, 1.5399265260595e-01,
259  1.7782794100389e-01, 2.0535250264571e-01,
260  2.3713737056617e-01, 2.7384196342644e-01,
261  3.1622776601684e-01, 3.6517412725484e-01,
262  4.2169650342858e-01, 4.8696752516586e-01,
263  5.6234132519035e-01, 6.4938163157621e-01,
264  7.4989420933246e-01, 8.6596432336007e-01,
265  1.0000000000000e+00, 1.1547819846895e+00,
266  1.3335214321633e+00, 1.5399265260595e+00,
267  1.7782794100389e+00, 2.0535250264571e+00,
268  2.3713737056617e+00, 2.7384196342644e+00,
269  3.1622776601684e+00, 3.6517412725484e+00,
270  4.2169650342858e+00, 4.8696752516586e+00,
271  5.6234132519035e+00, 6.4938163157621e+00,
272  7.4989420933246e+00, 8.6596432336007e+00,
273  1.0000000000000e+01, 1.1547819846895e+01,
274  1.3335214321633e+01, 1.5399265260595e+01,
275  1.7782794100389e+01, 2.0535250264571e+01,
276  2.3713737056617e+01, 2.7384196342644e+01,
277  3.1622776601684e+01, 3.6517412725484e+01,
278  4.2169650342858e+01, 4.8696752516586e+01,
279  5.6234132519035e+01, 6.4938163157621e+01,
280  7.4989420933246e+01, 8.6596432336007e+01,
281  1.0000000000000e+02, 1.1547819846895e+02,
282  1.3335214321633e+02, 1.5399265260595e+02,
283  1.7782794100389e+02, 2.0535250264571e+02,
284  2.3713737056617e+02, 2.7384196342644e+02,
285  3.1622776601684e+02, 3.6517412725484e+02,
286  4.2169650342858e+02, 4.8696752516586e+02,
287  5.6234132519035e+02, 6.4938163157621e+02,
288  7.4989420933246e+02, 8.6596432336007e+02,
289  1.0000000000000e+03, 1.1547819846895e+03,
290  1.3335214321633e+03, 1.5399265260595e+03,
291  1.7782794100389e+03, 2.0535250264571e+03,
292  2.3713737056617e+03, 2.7384196342644e+03,
293  3.1622776601684e+03, 3.6517412725484e+03,
294  4.2169650342858e+03, 4.8696752516586e+03,
295  5.6234132519035e+03, 6.4938163157621e+03,
296  7.4989420933246e+03, 8.6596432336007e+03,
297  1.0000000000000e+04, 1.1547819846895e+04,
298  1.3335214321633e+04, 1.5399265260595e+04,
299  1.7782794100389e+04, 2.0535250264571e+04,
300  2.3713737056617e+04, 2.7384196342644e+04,
301  3.1622776601684e+04, 3.6517412725484e+04,
302  4.2169650342858e+04, 4.8696752516586e+04,
303  5.6234132519035e+04, 6.4938163157621e+04,
304  7.4989420933246e+04, 8.6596432336007e+04,
305  1.0000000000000e+05, 1.1547819846895e+05,
306  1.3335214321633e+05, 1.5399265260595e+05,
307  1.7782794100389e+05, 2.0535250264571e+05,
308  2.3713737056617e+05, 2.7384196342644e+05,
309  3.1622776601684e+05, 3.6517412725484e+05,
310  4.2169650342858e+05, 4.8696752516586e+05,
311  5.6234132519035e+05, 6.4938163157621e+05,
312  7.4989420933246e+05, 8.6596432336007e+05,
313 };
314 
315 /**
316  * decode exponents coded with VLC codes
317  */
318 static int decode_exp_vlc(WMACodecContext *s, int ch)
319 {
320  int last_exp, n, code;
321  const uint16_t *ptr;
322  float v, max_scale;
323  uint32_t *q, *q_end, iv;
324  const float *ptab = pow_tab + 60;
325  const uint32_t *iptab = (const uint32_t *) ptab;
326 
327  ptr = s->exponent_bands[s->frame_len_bits - s->block_len_bits];
328  q = (uint32_t *) s->exponents[ch];
329  q_end = q + s->block_len;
330  max_scale = 0;
331  if (s->version == 1) {
332  last_exp = get_bits(&s->gb, 5) + 10;
333  v = ptab[last_exp];
334  iv = iptab[last_exp];
335  max_scale = v;
336  n = *ptr++;
337  switch (n & 3) do {
338  case 0: *q++ = iv;
339  case 3: *q++ = iv;
340  case 2: *q++ = iv;
341  case 1: *q++ = iv;
342  } while ((n -= 4) > 0);
343  } else
344  last_exp = 36;
345 
346  while (q < q_end) {
347  code = get_vlc2(&s->gb, s->exp_vlc.table, EXPVLCBITS, EXPMAX);
348  /* NOTE: this offset is the same as MPEG-4 AAC! */
349  last_exp += code - 60;
350  if ((unsigned) last_exp + 60 >= FF_ARRAY_ELEMS(pow_tab)) {
351  av_log(s->avctx, AV_LOG_ERROR, "Exponent out of range: %d\n",
352  last_exp);
353  return -1;
354  }
355  v = ptab[last_exp];
356  iv = iptab[last_exp];
357  if (v > max_scale)
358  max_scale = v;
359  n = *ptr++;
360  switch (n & 3) do {
361  case 0: *q++ = iv;
362  case 3: *q++ = iv;
363  case 2: *q++ = iv;
364  case 1: *q++ = iv;
365  } while ((n -= 4) > 0);
366  }
367  s->max_exponent[ch] = max_scale;
368  return 0;
369 }
370 
371 /**
372  * Apply MDCT window and add into output.
373  *
374  * We ensure that when the windows overlap their squared sum
375  * is always 1 (MDCT reconstruction rule).
376  */
377 static void wma_window(WMACodecContext *s, float *out)
378 {
379  float *in = s->output;
380  int block_len, bsize, n;
381 
382  /* left part */
383  if (s->block_len_bits <= s->prev_block_len_bits) {
384  block_len = s->block_len;
385  bsize = s->frame_len_bits - s->block_len_bits;
386 
387  s->fdsp->vector_fmul_add(out, in, s->windows[bsize],
388  out, block_len);
389  } else {
390  block_len = 1 << s->prev_block_len_bits;
391  n = (s->block_len - block_len) / 2;
392  bsize = s->frame_len_bits - s->prev_block_len_bits;
393 
394  s->fdsp->vector_fmul_add(out + n, in + n, s->windows[bsize],
395  out + n, block_len);
396 
397  memcpy(out + n + block_len, in + n + block_len, n * sizeof(float));
398  }
399 
400  out += s->block_len;
401  in += s->block_len;
402 
403  /* right part */
404  if (s->block_len_bits <= s->next_block_len_bits) {
405  block_len = s->block_len;
406  bsize = s->frame_len_bits - s->block_len_bits;
407 
408  s->fdsp->vector_fmul_reverse(out, in, s->windows[bsize], block_len);
409  } else {
410  block_len = 1 << s->next_block_len_bits;
411  n = (s->block_len - block_len) / 2;
412  bsize = s->frame_len_bits - s->next_block_len_bits;
413 
414  memcpy(out, in, n * sizeof(float));
415 
416  s->fdsp->vector_fmul_reverse(out + n, in + n, s->windows[bsize],
417  block_len);
418 
419  memset(out + n + block_len, 0, n * sizeof(float));
420  }
421 }
422 
423 /**
424  * @return 0 if OK. 1 if last block of frame. return -1 if
425  * unrecoverable error.
426  */
428 {
429  int n, v, a, ch, bsize;
430  int coef_nb_bits, total_gain;
431  int nb_coefs[MAX_CHANNELS];
432  float mdct_norm;
433  FFTContext *mdct;
434 
435 #ifdef TRACE
436  ff_tlog(s->avctx, "***decode_block: %d:%d\n",
437  s->frame_count - 1, s->block_num);
438 #endif /* TRACE */
439 
440  /* compute current block length */
441  if (s->use_variable_block_len) {
442  n = av_log2(s->nb_block_sizes - 1) + 1;
443 
444  if (s->reset_block_lengths) {
445  s->reset_block_lengths = 0;
446  v = get_bits(&s->gb, n);
447  if (v >= s->nb_block_sizes) {
448  av_log(s->avctx, AV_LOG_ERROR,
449  "prev_block_len_bits %d out of range\n",
450  s->frame_len_bits - v);
451  return -1;
452  }
453  s->prev_block_len_bits = s->frame_len_bits - v;
454  v = get_bits(&s->gb, n);
455  if (v >= s->nb_block_sizes) {
456  av_log(s->avctx, AV_LOG_ERROR,
457  "block_len_bits %d out of range\n",
458  s->frame_len_bits - v);
459  return -1;
460  }
461  s->block_len_bits = s->frame_len_bits - v;
462  } else {
463  /* update block lengths */
464  s->prev_block_len_bits = s->block_len_bits;
465  s->block_len_bits = s->next_block_len_bits;
466  }
467  v = get_bits(&s->gb, n);
468  if (v >= s->nb_block_sizes) {
469  av_log(s->avctx, AV_LOG_ERROR,
470  "next_block_len_bits %d out of range\n",
471  s->frame_len_bits - v);
472  return -1;
473  }
474  s->next_block_len_bits = s->frame_len_bits - v;
475  } else {
476  /* fixed block len */
477  s->next_block_len_bits = s->frame_len_bits;
478  s->prev_block_len_bits = s->frame_len_bits;
479  s->block_len_bits = s->frame_len_bits;
480  }
481 
482  if (s->frame_len_bits - s->block_len_bits >= s->nb_block_sizes){
483  av_log(s->avctx, AV_LOG_ERROR, "block_len_bits not initialized to a valid value\n");
484  return -1;
485  }
486 
487  /* now check if the block length is coherent with the frame length */
488  s->block_len = 1 << s->block_len_bits;
489  if ((s->block_pos + s->block_len) > s->frame_len) {
490  av_log(s->avctx, AV_LOG_ERROR, "frame_len overflow\n");
491  return -1;
492  }
493 
494  if (s->avctx->channels == 2)
495  s->ms_stereo = get_bits1(&s->gb);
496  v = 0;
497  for (ch = 0; ch < s->avctx->channels; ch++) {
498  a = get_bits1(&s->gb);
499  s->channel_coded[ch] = a;
500  v |= a;
501  }
502 
503  bsize = s->frame_len_bits - s->block_len_bits;
504 
505  /* if no channel coded, no need to go further */
506  /* XXX: fix potential framing problems */
507  if (!v)
508  goto next;
509 
510  /* read total gain and extract corresponding number of bits for
511  * coef escape coding */
512  total_gain = 1;
513  for (;;) {
514  if (get_bits_left(&s->gb) < 7) {
515  av_log(s->avctx, AV_LOG_ERROR, "total_gain overread\n");
516  return AVERROR_INVALIDDATA;
517  }
518  a = get_bits(&s->gb, 7);
519  total_gain += a;
520  if (a != 127)
521  break;
522  }
523 
524  coef_nb_bits = ff_wma_total_gain_to_bits(total_gain);
525 
526  /* compute number of coefficients */
527  n = s->coefs_end[bsize] - s->coefs_start;
528  for (ch = 0; ch < s->avctx->channels; ch++)
529  nb_coefs[ch] = n;
530 
531  /* complex coding */
532  if (s->use_noise_coding) {
533  for (ch = 0; ch < s->avctx->channels; ch++) {
534  if (s->channel_coded[ch]) {
535  int i, n, a;
536  n = s->exponent_high_sizes[bsize];
537  for (i = 0; i < n; i++) {
538  a = get_bits1(&s->gb);
539  s->high_band_coded[ch][i] = a;
540  /* if noise coding, the coefficients are not transmitted */
541  if (a)
542  nb_coefs[ch] -= s->exponent_high_bands[bsize][i];
543  }
544  }
545  }
546  for (ch = 0; ch < s->avctx->channels; ch++) {
547  if (s->channel_coded[ch]) {
548  int i, n, val;
549 
550  n = s->exponent_high_sizes[bsize];
551  val = (int) 0x80000000;
552  for (i = 0; i < n; i++) {
553  if (s->high_band_coded[ch][i]) {
554  if (val == (int) 0x80000000) {
555  val = get_bits(&s->gb, 7) - 19;
556  } else {
557  val += get_vlc2(&s->gb, s->hgain_vlc.table,
559  }
560  s->high_band_values[ch][i] = val;
561  }
562  }
563  }
564  }
565  }
566 
567  /* exponents can be reused in short blocks. */
568  if ((s->block_len_bits == s->frame_len_bits) || get_bits1(&s->gb)) {
569  for (ch = 0; ch < s->avctx->channels; ch++) {
570  if (s->channel_coded[ch]) {
571  if (s->use_exp_vlc) {
572  if (decode_exp_vlc(s, ch) < 0)
573  return -1;
574  } else {
575  decode_exp_lsp(s, ch);
576  }
577  s->exponents_bsize[ch] = bsize;
578  s->exponents_initialized[ch] = 1;
579  }
580  }
581  }
582 
583  for (ch = 0; ch < s->avctx->channels; ch++) {
584  if (s->channel_coded[ch] && !s->exponents_initialized[ch])
585  return AVERROR_INVALIDDATA;
586  }
587 
588  /* parse spectral coefficients : just RLE encoding */
589  for (ch = 0; ch < s->avctx->channels; ch++) {
590  if (s->channel_coded[ch]) {
591  int tindex;
592  WMACoef *ptr = &s->coefs1[ch][0];
593  int ret;
594 
595  /* special VLC tables are used for ms stereo because
596  * there is potentially less energy there */
597  tindex = (ch == 1 && s->ms_stereo);
598  memset(ptr, 0, s->block_len * sizeof(WMACoef));
599  ret = ff_wma_run_level_decode(s->avctx, &s->gb, &s->coef_vlc[tindex],
600  s->level_table[tindex], s->run_table[tindex],
601  0, ptr, 0, nb_coefs[ch],
602  s->block_len, s->frame_len_bits, coef_nb_bits);
603  if (ret < 0)
604  return ret;
605  }
606  if (s->version == 1 && s->avctx->channels >= 2)
607  align_get_bits(&s->gb);
608  }
609 
610  /* normalize */
611  {
612  int n4 = s->block_len / 2;
613  mdct_norm = 1.0 / (float) n4;
614  if (s->version == 1)
615  mdct_norm *= sqrt(n4);
616  }
617 
618  /* finally compute the MDCT coefficients */
619  for (ch = 0; ch < s->avctx->channels; ch++) {
620  if (s->channel_coded[ch]) {
621  WMACoef *coefs1;
622  float *coefs, *exponents, mult, mult1, noise;
623  int i, j, n, n1, last_high_band, esize;
624  float exp_power[HIGH_BAND_MAX_SIZE];
625 
626  coefs1 = s->coefs1[ch];
627  exponents = s->exponents[ch];
628  esize = s->exponents_bsize[ch];
629  mult = ff_exp10(total_gain * 0.05) / s->max_exponent[ch];
630  mult *= mdct_norm;
631  coefs = s->coefs[ch];
632  if (s->use_noise_coding) {
633  mult1 = mult;
634  /* very low freqs : noise */
635  for (i = 0; i < s->coefs_start; i++) {
636  *coefs++ = s->noise_table[s->noise_index] *
637  exponents[i << bsize >> esize] * mult1;
638  s->noise_index = (s->noise_index + 1) &
639  (NOISE_TAB_SIZE - 1);
640  }
641 
642  n1 = s->exponent_high_sizes[bsize];
643 
644  /* compute power of high bands */
645  exponents = s->exponents[ch] +
646  (s->high_band_start[bsize] << bsize >> esize);
647  last_high_band = 0; /* avoid warning */
648  for (j = 0; j < n1; j++) {
649  n = s->exponent_high_bands[s->frame_len_bits -
650  s->block_len_bits][j];
651  if (s->high_band_coded[ch][j]) {
652  float e2, v;
653  e2 = 0;
654  for (i = 0; i < n; i++) {
655  v = exponents[i << bsize >> esize];
656  e2 += v * v;
657  }
658  exp_power[j] = e2 / n;
659  last_high_band = j;
660  ff_tlog(s->avctx, "%d: power=%f (%d)\n", j, exp_power[j], n);
661  }
662  exponents += n << bsize >> esize;
663  }
664 
665  /* main freqs and high freqs */
666  exponents = s->exponents[ch] + (s->coefs_start << bsize >> esize);
667  for (j = -1; j < n1; j++) {
668  if (j < 0)
669  n = s->high_band_start[bsize] - s->coefs_start;
670  else
671  n = s->exponent_high_bands[s->frame_len_bits -
672  s->block_len_bits][j];
673  if (j >= 0 && s->high_band_coded[ch][j]) {
674  /* use noise with specified power */
675  mult1 = sqrt(exp_power[j] / exp_power[last_high_band]);
676  /* XXX: use a table */
677  mult1 = mult1 * ff_exp10(s->high_band_values[ch][j] * 0.05);
678  mult1 = mult1 / (s->max_exponent[ch] * s->noise_mult);
679  mult1 *= mdct_norm;
680  for (i = 0; i < n; i++) {
681  noise = s->noise_table[s->noise_index];
682  s->noise_index = (s->noise_index + 1) & (NOISE_TAB_SIZE - 1);
683  *coefs++ = noise * exponents[i << bsize >> esize] * mult1;
684  }
685  exponents += n << bsize >> esize;
686  } else {
687  /* coded values + small noise */
688  for (i = 0; i < n; i++) {
689  noise = s->noise_table[s->noise_index];
690  s->noise_index = (s->noise_index + 1) & (NOISE_TAB_SIZE - 1);
691  *coefs++ = ((*coefs1++) + noise) *
692  exponents[i << bsize >> esize] * mult;
693  }
694  exponents += n << bsize >> esize;
695  }
696  }
697 
698  /* very high freqs : noise */
699  n = s->block_len - s->coefs_end[bsize];
700  mult1 = mult * exponents[(-(1 << bsize)) >> esize];
701  for (i = 0; i < n; i++) {
702  *coefs++ = s->noise_table[s->noise_index] * mult1;
703  s->noise_index = (s->noise_index + 1) & (NOISE_TAB_SIZE - 1);
704  }
705  } else {
706  /* XXX: optimize more */
707  for (i = 0; i < s->coefs_start; i++)
708  *coefs++ = 0.0;
709  n = nb_coefs[ch];
710  for (i = 0; i < n; i++)
711  *coefs++ = coefs1[i] * exponents[i << bsize >> esize] * mult;
712  n = s->block_len - s->coefs_end[bsize];
713  for (i = 0; i < n; i++)
714  *coefs++ = 0.0;
715  }
716  }
717  }
718 
719 #ifdef TRACE
720  for (ch = 0; ch < s->avctx->channels; ch++) {
721  if (s->channel_coded[ch]) {
722  dump_floats(s, "exponents", 3, s->exponents[ch], s->block_len);
723  dump_floats(s, "coefs", 1, s->coefs[ch], s->block_len);
724  }
725  }
726 #endif /* TRACE */
727 
728  if (s->ms_stereo && s->channel_coded[1]) {
729  /* nominal case for ms stereo: we do it before mdct */
730  /* no need to optimize this case because it should almost
731  * never happen */
732  if (!s->channel_coded[0]) {
733  ff_tlog(s->avctx, "rare ms-stereo case happened\n");
734  memset(s->coefs[0], 0, sizeof(float) * s->block_len);
735  s->channel_coded[0] = 1;
736  }
737 
738  s->fdsp->butterflies_float(s->coefs[0], s->coefs[1], s->block_len);
739  }
740 
741 next:
742  mdct = &s->mdct_ctx[bsize];
743 
744  for (ch = 0; ch < s->avctx->channels; ch++) {
745  int n4, index;
746 
747  n4 = s->block_len / 2;
748  if (s->channel_coded[ch])
749  mdct->imdct_calc(mdct, s->output, s->coefs[ch]);
750  else if (!(s->ms_stereo && ch == 1))
751  memset(s->output, 0, sizeof(s->output));
752 
753  /* multiply by the window and add in the frame */
754  index = (s->frame_len / 2) + s->block_pos - n4;
755  wma_window(s, &s->frame_out[ch][index]);
756  }
757 
758  /* update block number */
759  s->block_num++;
760  s->block_pos += s->block_len;
761  if (s->block_pos >= s->frame_len)
762  return 1;
763  else
764  return 0;
765 }
766 
767 /* decode a frame of frame_len samples */
768 static int wma_decode_frame(WMACodecContext *s, float **samples,
769  int samples_offset)
770 {
771  int ret, ch;
772 
773 #ifdef TRACE
774  ff_tlog(s->avctx, "***decode_frame: %d size=%d\n",
775  s->frame_count++, s->frame_len);
776 #endif /* TRACE */
777 
778  /* read each block */
779  s->block_num = 0;
780  s->block_pos = 0;
781  for (;;) {
782  ret = wma_decode_block(s);
783  if (ret < 0)
784  return -1;
785  if (ret)
786  break;
787  }
788 
789  for (ch = 0; ch < s->avctx->channels; ch++) {
790  /* copy current block to output */
791  memcpy(samples[ch] + samples_offset, s->frame_out[ch],
792  s->frame_len * sizeof(*s->frame_out[ch]));
793  /* prepare for next block */
794  memmove(&s->frame_out[ch][0], &s->frame_out[ch][s->frame_len],
795  s->frame_len * sizeof(*s->frame_out[ch]));
796 
797 #ifdef TRACE
798  dump_floats(s, "samples", 6, samples[ch] + samples_offset,
799  s->frame_len);
800 #endif /* TRACE */
801  }
802 
803  return 0;
804 }
805 
806 static int wma_decode_superframe(AVCodecContext *avctx, void *data,
807  int *got_frame_ptr, AVPacket *avpkt)
808 {
809  AVFrame *frame = data;
810  const uint8_t *buf = avpkt->data;
811  int buf_size = avpkt->size;
812  WMACodecContext *s = avctx->priv_data;
813  int nb_frames, bit_offset, i, pos, len, ret;
814  uint8_t *q;
815  float **samples;
816  int samples_offset;
817 
818  ff_tlog(avctx, "***decode_superframe:\n");
819 
820  if (buf_size == 0) {
821  s->last_superframe_len = 0;
822  return 0;
823  }
824  if (buf_size < avctx->block_align) {
825  av_log(avctx, AV_LOG_ERROR,
826  "Input packet size too small (%d < %d)\n",
827  buf_size, avctx->block_align);
828  return AVERROR_INVALIDDATA;
829  }
830  if (avctx->block_align)
831  buf_size = avctx->block_align;
832 
833  init_get_bits(&s->gb, buf, buf_size * 8);
834 
835  if (s->use_bit_reservoir) {
836  /* read super frame header */
837  skip_bits(&s->gb, 4); /* super frame index */
838  nb_frames = get_bits(&s->gb, 4) - (s->last_superframe_len <= 0);
839  if (nb_frames <= 0) {
840  int is_error = nb_frames < 0 || get_bits_left(&s->gb) <= 8;
841  av_log(avctx, is_error ? AV_LOG_ERROR : AV_LOG_WARNING,
842  "nb_frames is %d bits left %d\n",
843  nb_frames, get_bits_left(&s->gb));
844  if (is_error)
845  return AVERROR_INVALIDDATA;
846 
847  if ((s->last_superframe_len + buf_size - 1) >
849  goto fail;
850 
851  q = s->last_superframe + s->last_superframe_len;
852  len = buf_size - 1;
853  while (len > 0) {
854  *q++ = get_bits (&s->gb, 8);
855  len --;
856  }
857  memset(q, 0, AV_INPUT_BUFFER_PADDING_SIZE);
858 
859  s->last_superframe_len += 8*buf_size - 8;
860 // s->reset_block_lengths = 1; //XXX is this needed ?
861  *got_frame_ptr = 0;
862  return buf_size;
863  }
864  } else
865  nb_frames = 1;
866 
867  /* get output buffer */
868  frame->nb_samples = nb_frames * s->frame_len;
869  if ((ret = ff_get_buffer(avctx, frame, 0)) < 0)
870  return ret;
871  samples = (float **) frame->extended_data;
872  samples_offset = 0;
873 
874  if (s->use_bit_reservoir) {
875  bit_offset = get_bits(&s->gb, s->byte_offset_bits + 3);
876  if (bit_offset > get_bits_left(&s->gb)) {
877  av_log(avctx, AV_LOG_ERROR,
878  "Invalid last frame bit offset %d > buf size %d (%d)\n",
879  bit_offset, get_bits_left(&s->gb), buf_size);
880  goto fail;
881  }
882 
883  if (s->last_superframe_len > 0) {
884  /* add bit_offset bits to last frame */
885  if ((s->last_superframe_len + ((bit_offset + 7) >> 3)) >
887  goto fail;
888  q = s->last_superframe + s->last_superframe_len;
889  len = bit_offset;
890  while (len > 7) {
891  *q++ = get_bits(&s->gb, 8);
892  len -= 8;
893  }
894  if (len > 0)
895  *q++ = get_bits(&s->gb, len) << (8 - len);
896  memset(q, 0, AV_INPUT_BUFFER_PADDING_SIZE);
897 
898  /* XXX: bit_offset bits into last frame */
899  init_get_bits(&s->gb, s->last_superframe,
900  s->last_superframe_len * 8 + bit_offset);
901  /* skip unused bits */
902  if (s->last_bitoffset > 0)
903  skip_bits(&s->gb, s->last_bitoffset);
904  /* this frame is stored in the last superframe and in the
905  * current one */
906  if (wma_decode_frame(s, samples, samples_offset) < 0)
907  goto fail;
908  samples_offset += s->frame_len;
909  nb_frames--;
910  }
911 
912  /* read each frame starting from bit_offset */
913  pos = bit_offset + 4 + 4 + s->byte_offset_bits + 3;
914  if (pos >= MAX_CODED_SUPERFRAME_SIZE * 8 || pos > buf_size * 8)
915  return AVERROR_INVALIDDATA;
916  init_get_bits(&s->gb, buf + (pos >> 3), (buf_size - (pos >> 3)) * 8);
917  len = pos & 7;
918  if (len > 0)
919  skip_bits(&s->gb, len);
920 
921  s->reset_block_lengths = 1;
922  for (i = 0; i < nb_frames; i++) {
923  if (wma_decode_frame(s, samples, samples_offset) < 0)
924  goto fail;
925  samples_offset += s->frame_len;
926  }
927 
928  /* we copy the end of the frame in the last frame buffer */
929  pos = get_bits_count(&s->gb) +
930  ((bit_offset + 4 + 4 + s->byte_offset_bits + 3) & ~7);
931  s->last_bitoffset = pos & 7;
932  pos >>= 3;
933  len = buf_size - pos;
934  if (len > MAX_CODED_SUPERFRAME_SIZE || len < 0) {
935  av_log(s->avctx, AV_LOG_ERROR, "len %d invalid\n", len);
936  goto fail;
937  }
938  s->last_superframe_len = len;
939  memcpy(s->last_superframe, buf + pos, len);
940  } else {
941  /* single frame decode */
942  if (wma_decode_frame(s, samples, samples_offset) < 0)
943  goto fail;
944  samples_offset += s->frame_len;
945  }
946 
947  ff_dlog(s->avctx, "%d %d %d %d outbytes:%"PTRDIFF_SPECIFIER" eaten:%d\n",
948  s->frame_len_bits, s->block_len_bits, s->frame_len, s->block_len,
949  (int8_t *) samples - (int8_t *) data, avctx->block_align);
950 
951  *got_frame_ptr = 1;
952 
953  return buf_size;
954 
955 fail:
956  /* when error, we reset the bit reservoir */
957  s->last_superframe_len = 0;
958  return -1;
959 }
960 
961 static av_cold void flush(AVCodecContext *avctx)
962 {
963  WMACodecContext *s = avctx->priv_data;
964 
965  s->last_bitoffset =
966  s->last_superframe_len = 0;
967 }
968 
969 #if CONFIG_WMAV1_DECODER
971  .name = "wmav1",
972  .long_name = NULL_IF_CONFIG_SMALL("Windows Media Audio 1"),
973  .type = AVMEDIA_TYPE_AUDIO,
974  .id = AV_CODEC_ID_WMAV1,
975  .priv_data_size = sizeof(WMACodecContext),
977  .close = ff_wma_end,
979  .flush = flush,
980  .capabilities = AV_CODEC_CAP_DR1,
981  .sample_fmts = (const enum AVSampleFormat[]) { AV_SAMPLE_FMT_FLTP,
983  .caps_internal = FF_CODEC_CAP_INIT_CLEANUP,
984 };
985 #endif
986 #if CONFIG_WMAV2_DECODER
988  .name = "wmav2",
989  .long_name = NULL_IF_CONFIG_SMALL("Windows Media Audio 2"),
990  .type = AVMEDIA_TYPE_AUDIO,
991  .id = AV_CODEC_ID_WMAV2,
992  .priv_data_size = sizeof(WMACodecContext),
994  .close = ff_wma_end,
996  .flush = flush,
997  .capabilities = AV_CODEC_CAP_DR1,
998  .sample_fmts = (const enum AVSampleFormat[]) { AV_SAMPLE_FMT_FLTP,
1000  .caps_internal = FF_CODEC_CAP_INIT_CLEANUP,
1001 };
1002 #endif
#define MAX_CHANNELS
Definition: aac.h:48
const uint32_t ff_aac_scalefactor_code[121]
Definition: aactab.c:92
const uint8_t ff_aac_scalefactor_bits[121]
Definition: aactab.c:111
static enum AVSampleFormat sample_fmts[]
Definition: adpcmenc.c:925
static double val(void *priv, double ch)
Definition: aeval.c:76
AVCodec ff_wmav1_decoder
AVCodec ff_wmav2_decoder
Macro definitions for various function/variable attributes.
#define av_cold
Definition: attributes.h:88
uint8_t pi<< 24) CONV_FUNC_GROUP(AV_SAMPLE_FMT_FLT, float, AV_SAMPLE_FMT_U8, uint8_t,(*(const uint8_t *) pi - 0x80) *(1.0f/(1<< 7))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_DBL, double, AV_SAMPLE_FMT_U8, uint8_t,(*(const uint8_t *) pi - 0x80) *(1.0/(1<< 7))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_U8, uint8_t, AV_SAMPLE_FMT_S16, int16_t,(*(const int16_t *) pi >> 8)+0x80) CONV_FUNC_GROUP(AV_SAMPLE_FMT_FLT, float, AV_SAMPLE_FMT_S16, int16_t, *(const int16_t *) pi *(1.0f/(1<< 15))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_DBL, double, AV_SAMPLE_FMT_S16, int16_t, *(const int16_t *) pi *(1.0/(1<< 15))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_U8, uint8_t, AV_SAMPLE_FMT_S32, int32_t,(*(const int32_t *) pi >> 24)+0x80) CONV_FUNC_GROUP(AV_SAMPLE_FMT_FLT, float, AV_SAMPLE_FMT_S32, int32_t, *(const int32_t *) pi *(1.0f/(1U<< 31))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_DBL, double, AV_SAMPLE_FMT_S32, int32_t, *(const int32_t *) pi *(1.0/(1U<< 31))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_U8, uint8_t, AV_SAMPLE_FMT_FLT, float, av_clip_uint8(lrintf(*(const float *) pi *(1<< 7))+0x80)) CONV_FUNC_GROUP(AV_SAMPLE_FMT_S16, int16_t, AV_SAMPLE_FMT_FLT, float, av_clip_int16(lrintf(*(const float *) pi *(1<< 15)))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_S32, int32_t, AV_SAMPLE_FMT_FLT, float, av_clipl_int32(llrintf(*(const float *) pi *(1U<< 31)))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_U8, uint8_t, AV_SAMPLE_FMT_DBL, double, av_clip_uint8(lrint(*(const double *) pi *(1<< 7))+0x80)) CONV_FUNC_GROUP(AV_SAMPLE_FMT_S16, int16_t, AV_SAMPLE_FMT_DBL, double, av_clip_int16(lrint(*(const double *) pi *(1<< 15)))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_S32, int32_t, AV_SAMPLE_FMT_DBL, double, av_clipl_int32(llrint(*(const double *) pi *(1U<< 31)))) #define SET_CONV_FUNC_GROUP(ofmt, ifmt) static void set_generic_function(AudioConvert *ac) { } void ff_audio_convert_free(AudioConvert **ac) { if(! *ac) return;ff_dither_free(&(*ac) ->dc);av_freep(ac);} AudioConvert *ff_audio_convert_alloc(AVAudioResampleContext *avr, enum AVSampleFormat out_fmt, enum AVSampleFormat in_fmt, int channels, int sample_rate, int apply_map) { AudioConvert *ac;int in_planar, out_planar;ac=av_mallocz(sizeof(*ac));if(!ac) return NULL;ac->avr=avr;ac->out_fmt=out_fmt;ac->in_fmt=in_fmt;ac->channels=channels;ac->apply_map=apply_map;if(avr->dither_method !=AV_RESAMPLE_DITHER_NONE &&av_get_packed_sample_fmt(out_fmt)==AV_SAMPLE_FMT_S16 &&av_get_bytes_per_sample(in_fmt) > 2) { ac->dc=ff_dither_alloc(avr, out_fmt, in_fmt, channels, sample_rate, apply_map);if(!ac->dc) { av_free(ac);return NULL;} return ac;} in_planar=ff_sample_fmt_is_planar(in_fmt, channels);out_planar=ff_sample_fmt_is_planar(out_fmt, channels);if(in_planar==out_planar) { ac->func_type=CONV_FUNC_TYPE_FLAT;ac->planes=in_planar ? ac->channels :1;} else if(in_planar) ac->func_type=CONV_FUNC_TYPE_INTERLEAVE;else ac->func_type=CONV_FUNC_TYPE_DEINTERLEAVE;set_generic_function(ac);if(ARCH_AARCH64) ff_audio_convert_init_aarch64(ac);if(ARCH_ARM) ff_audio_convert_init_arm(ac);if(ARCH_X86) ff_audio_convert_init_x86(ac);return ac;} int ff_audio_convert(AudioConvert *ac, AudioData *out, AudioData *in) { int use_generic=1;int len=in->nb_samples;int p;if(ac->dc) { av_log(ac->avr, AV_LOG_TRACE, "%d samples - audio_convert: %s to %s (dithered)\n", len, av_get_sample_fmt_name(ac->in_fmt), av_get_sample_fmt_name(ac->out_fmt));return ff_convert_dither(ac-> in
uint8_t
Libavcodec external API header.
#define AV_RL16
Definition: intreadwrite.h:42
static av_cold int init(AVCodecContext *avctx)
Definition: avrndec.c:31
int ff_init_vlc_from_lengths(VLC *vlc_arg, int nb_bits, int nb_codes, const int8_t *lens, int lens_wrap, const void *symbols, int symbols_wrap, int symbols_size, int offset, int flags, void *logctx)
Build VLC decoding tables suitable for use with get_vlc2()
Definition: bitstream.c:381
#define u(width, name, range_min, range_max)
Definition: cbs_h2645.c:264
#define s(width, name)
Definition: cbs_vp9.c:257
#define f(width, name)
Definition: cbs_vp9.c:255
#define fail()
Definition: checkasm.h:133
int ff_get_buffer(AVCodecContext *avctx, AVFrame *frame, int flags)
Get a buffer for a frame.
Definition: decode.c:1900
static void decode(AVCodecContext *dec_ctx, AVPacket *pkt, AVFrame *frame, FILE *outfile)
Definition: decode_audio.c:71
static AVFrame * frame
internal math functions header
static av_always_inline double ff_exp10(double x)
Compute 10^x for floating point values.
Definition: ffmath.h:42
int
#define ff_mdct_init
Definition: fft.h:161
static av_always_inline int get_vlc2(GetBitContext *s, VLC_TYPE(*table)[2], int bits, int max_depth)
Parse a vlc code.
Definition: get_bits.h:797
static int get_bits_left(GetBitContext *gb)
Definition: get_bits.h:849
static unsigned int get_bits1(GetBitContext *s)
Definition: get_bits.h:498
static void skip_bits(GetBitContext *s, int n)
Definition: get_bits.h:467
static int get_bits_count(const GetBitContext *s)
Definition: get_bits.h:219
static unsigned int get_bits(GetBitContext *s, int n)
Read 1-25 bits.
Definition: get_bits.h:379
static const uint8_t * align_get_bits(GetBitContext *s)
Definition: get_bits.h:693
static int init_get_bits(GetBitContext *s, const uint8_t *buffer, int bit_size)
Initialize GetBitContext.
Definition: get_bits.h:659
#define AV_CODEC_CAP_DR1
Codec uses get_buffer() or get_encode_buffer() for allocating buffers and supports custom allocators.
Definition: codec.h:52
@ AV_CODEC_ID_WMAV1
Definition: codec_id.h:431
@ AV_CODEC_ID_WMAV2
Definition: codec_id.h:432
#define AV_INPUT_BUFFER_PADDING_SIZE
Required number of additionally allocated bytes at the end of the input bitstream for decoding.
Definition: avcodec.h:215
#define AVERROR_INVALIDDATA
Invalid data found when processing input.
Definition: error.h:59
#define AVERROR(e)
Definition: error.h:43
#define AV_LOG_WARNING
Something somehow does not look correct.
Definition: log.h:200
#define AV_LOG_ERROR
Something went wrong and cannot losslessly be recovered.
Definition: log.h:194
@ AVMEDIA_TYPE_AUDIO
Definition: avutil.h:202
AVSampleFormat
Audio sample formats.
Definition: samplefmt.h:58
@ AV_SAMPLE_FMT_FLTP
float, planar
Definition: samplefmt.h:69
@ AV_SAMPLE_FMT_NONE
Definition: samplefmt.h:59
int index
Definition: gxfenc.c:89
int i
Definition: input.c:407
#define av_log2
Definition: intmath.h:83
static int16_t mult(Float11 *f1, Float11 *f2)
Definition: g726.c:55
#define ff_tlog(ctx,...)
Definition: internal.h:96
#define FF_CODEC_CAP_INIT_CLEANUP
The codec allows calling the close function for deallocation even if the init function returned a fai...
Definition: internal.h:49
common internal API header
#define NULL_IF_CONFIG_SMALL(x)
Return NULL if CONFIG_SMALL is true, otherwise the argument without modification.
Definition: internal.h:117
#define PTRDIFF_SPECIFIER
Definition: internal.h:192
#define exp2f(x)
Definition: libm.h:293
uint8_t w
Definition: llviddspenc.c:39
#define M_PI
Definition: mathematics.h:52
const char data[16]
Definition: mxf.c:142
static int noise(AVBSFContext *ctx, AVPacket *pkt)
Definition: noise_bsf.c:36
const char * name
Definition: qsvenc.c:46
#define FF_ARRAY_ELEMS(a)
const uint8_t * code
Definition: spdifenc.c:413
unsigned int pos
Definition: spdifenc.c:412
main external API structure.
Definition: avcodec.h:536
enum AVSampleFormat sample_fmt
audio sample format
Definition: avcodec.h:1204
const struct AVCodec * codec
Definition: avcodec.h:545
uint8_t * extradata
some codecs need / can use extradata like Huffman tables.
Definition: avcodec.h:637
int extradata_size
Definition: avcodec.h:638
int block_align
number of bytes per packet if constant and known or 0 Used by some WAV based audio codecs.
Definition: avcodec.h:1233
void * priv_data
Definition: avcodec.h:563
AVCodec.
Definition: codec.h:197
enum AVCodecID id
Definition: codec.h:211
const char * name
Name of the codec implementation.
Definition: codec.h:204
This structure describes decoded (raw) audio or video data.
Definition: frame.h:318
int nb_samples
number of audio samples (per channel) described by this frame
Definition: frame.h:384
uint8_t ** extended_data
pointers to the data planes/channels.
Definition: frame.h:365
This structure stores compressed data.
Definition: packet.h:346
int size
Definition: packet.h:370
uint8_t * data
Definition: packet.h:369
Definition: fft.h:83
void(* imdct_calc)(struct FFTContext *s, FFTSample *output, const FFTSample *input)
Definition: fft.h:102
#define ff_dlog(a,...)
#define av_log(a,...)
FILE * out
Definition: movenc.c:54
static const struct twinvq_data tab
const char * b
Definition: vf_curves.c:118
if(ret< 0)
Definition: vf_mcdeint.c:282
#define init_vlc(vlc, nb_bits, nb_codes, bits, bits_wrap, bits_size, codes, codes_wrap, codes_size, flags)
Definition: vlc.h:38
int len
int ff_wma_total_gain_to_bits(int total_gain)
Definition: wma.c:350
av_cold int ff_wma_init(AVCodecContext *avctx, int flags2)
Definition: wma.c:77
int ff_wma_run_level_decode(AVCodecContext *avctx, GetBitContext *gb, VLC *vlc, const float *level_table, const uint16_t *run_table, int version, WMACoef *ptr, int offset, int num_coefs, int block_len, int frame_len_bits, int coef_nb_bits)
Decode run level compressed coefficients.
Definition: wma.c:424
int ff_wma_end(AVCodecContext *avctx)
Definition: wma.c:364
#define NB_LSP_COEFS
Definition: wma.h:43
#define MAX_CODED_SUPERFRAME_SIZE
Definition: wma.h:46
const uint8_t ff_wma_hgain_hufftab[37][2]
Definition: wmadata.h:54
#define NOISE_TAB_SIZE
Definition: wma.h:50
const float ff_wma_lsp_codebook[NB_LSP_COEFS][16]
Definition: wmadata.h:64
#define LSP_POW_BITS
Definition: wma.h:52
float WMACoef
type for decoded coefficients, int16_t would be enough for wma 1/2
Definition: wma.h:58
#define HIGH_BAND_MAX_SIZE
Definition: wma.h:41
static void wma_lsp_to_curve_init(WMACodecContext *s, int frame_len)
Definition: wmadec.c:155
static int wma_decode_frame(WMACodecContext *s, float **samples, int samples_offset)
Definition: wmadec.c:768
#define EXPMAX
Definition: wmadec.c:44
#define HGAINVLCBITS
Definition: wmadec.c:46
static void wma_window(WMACodecContext *s, float *out)
Apply MDCT window and add into output.
Definition: wmadec.c:377
static av_cold int wma_decode_init(AVCodecContext *avctx)
Definition: wmadec.c:70
static void wma_lsp_to_curve(WMACodecContext *s, float *out, float *val_max_ptr, int n, float *lsp)
NOTE: We use the same code as Vorbis here.
Definition: wmadec.c:187
static int decode_exp_vlc(WMACodecContext *s, int ch)
decode exponents coded with VLC codes
Definition: wmadec.c:318
static int wma_decode_superframe(AVCodecContext *avctx, void *data, int *got_frame_ptr, AVPacket *avpkt)
Definition: wmadec.c:806
#define HGAINMAX
Definition: wmadec.c:47
static void decode_exp_lsp(WMACodecContext *s, int ch)
decode exponents coded with LSP coefficients (same idea as Vorbis)
Definition: wmadec.c:216
#define EXPVLCBITS
Definition: wmadec.c:43
static av_cold void flush(AVCodecContext *avctx)
Definition: wmadec.c:961
static float pow_m1_4(WMACodecContext *s, float x)
compute x^-0.25 with an exponent and mantissa table.
Definition: wmadec.c:136
static const float pow_tab[]
pow(10, i / 16.0) for i in -60..95
Definition: wmadec.c:234
static int wma_decode_block(WMACodecContext *s)
Definition: wmadec.c:427