33 int16_t* quant_energy,
35 int log2_ma_pred_order,
39 int avg_gain=quant_energy[(1 << log2_ma_pred_order) - 1];
41 for(
i=(1 << log2_ma_pred_order) - 1;
i>0;
i--)
43 avg_gain += quant_energy[
i-1];
44 quant_energy[
i] = quant_energy[
i-1];
48 quant_energy[0] =
FFMAX(avg_gain >> log2_ma_pred_order, -10240) - 4096;
50 quant_energy[0] = (6165 * ((
ff_log2_q15(gain_corr_factor) >> 2) - (13 << 13))) >> 13;
58 const int16_t* quant_energy,
67 for(
i=0;
i<ma_pred_order;
i++)
71 mr_energy += (((-6165LL *
ff_log2(dsp->scalarproduct_int16(fc_v, fc_v, subframe_size, 0))) >> 3) & ~0x3ff);
73 mr_energy = (5439 * (mr_energy >> 15)) >> 8;
76 ((
ff_exp2(mr_energy & 0x7fff) + 16) >> 5) * (gain_corr_factor >> 1),
77 (mr_energy >> 15) - 25
80 mr_energy = gain_corr_factor *
ff_exp10((
double)mr_energy / (20 << 23)) /
82 return mr_energy >> 12;
88 const float *pred_table)
93 float val = fixed_gain_factor *
97 sqrtf(fixed_mean_energy ? fixed_mean_energy : 1.0);
100 memmove(&prediction_error[0], &prediction_error[1],
101 3 *
sizeof(prediction_error[0]));
102 prediction_error[3] = 20.0 *
log10f(fixed_gain_factor);
108 const int prev_lag_int,
const int subframe,
109 int third_as_first,
int resolution)
112 if (subframe == 0 || (subframe == 2 && third_as_first)) {
114 if (pitch_index < 197)
117 pitch_index = 3 * pitch_index - 335;
120 if (resolution == 4) {
125 if (pitch_index < 4) {
127 pitch_index = 3 * (pitch_index + search_range_min) + 1;
128 }
else if (pitch_index < 12) {
130 pitch_index += 3 * search_range_min + 7;
133 pitch_index = 3 * (pitch_index + search_range_min - 6) + 1;
139 if (resolution == 5) {
147 *lag_int = pitch_index * 10923 >> 15;
148 *lag_frac = pitch_index - 3 * *lag_int - 1;
float ff_amr_set_fixed_gain(float fixed_gain_factor, float fixed_mean_energy, float *prediction_error, float energy_mean, const float *pred_table)
Calculate fixed gain (part of section 6.1.3 of AMR spec)
void ff_decode_pitch_lag(int *lag_int, int *lag_frac, int pitch_index, const int prev_lag_int, const int subframe, int third_as_first, int resolution)
Decode the adaptive codebook index to the integer and fractional parts of the pitch lag for one subfr...
void ff_acelp_update_past_gain(int16_t *quant_energy, int gain_corr_factor, int log2_ma_pred_order, int erasure)
Update past quantized energies.
int16_t ff_acelp_decode_gain_code(AudioDSPContext *adsp, int gain_corr_factor, const int16_t *fc_v, int mr_energy, const int16_t *quant_energy, const int16_t *ma_prediction_coeff, int subframe_size, int ma_pred_order)
Decode the adaptive codebook gain and add correction (4.1.5 and 3.9.1 of G.729).
static double val(void *priv, double ch)
static const float energy_mean[8]
desired mean innovation energy, indexed by active mode
Libavcodec external API header.
int ff_log2_q15(uint32_t value)
Calculate log2(x).
int ff_exp2(uint16_t power)
fixed-point implementation of exp2(x) in [0; 1] domain.
static int bidir_sal(int value, int offset)
Shift value left or right depending on sign of offset parameter.
common internal and external API header
internal math functions header
static av_always_inline double ff_exp10(double x)
Compute 10^x for floating point values.
static const uint16_t ma_prediction_coeff[4]
MA prediction coefficients (3.9.1 of G.729, near Equation 69)
float avpriv_scalarproduct_float_c(const float *v1, const float *v2, int len)
Return the scalar product of two vectors.
int32_t(* scalarproduct_int16)(const int16_t *v1, const int16_t *v2, int len)
Calculate scalar product of two vectors.