
MySQL++ Reference Manual
3.0.0

Generated by Doxygen 1.4.7

Fri Feb 29 16:26:00 2008

Contents

1 MySQL++ Reference Manual 1

1.1 Getting Started . 1

1.2 Major Classes . 1

1.3 Major Files . 1

1.4 If You Have Questions... 2

1.5 Licensing . 2

2 MySQL++ Hierarchical Index 3

2.1 MySQL++ Class Hierarchy . 3

3 MySQL++ Class Index 7

3.1 MySQL++ Class List . 7

4 MySQL++ File Index 11

4.1 MySQL++ File List . 11

5 MySQL++ Class Documentation 13

5.1 AutoFlag< T > Class Template Reference 13

5.2 mysqlpp::BadConversion Class Reference 15

5.3 mysqlpp::BadFieldName Class Reference 18

5.4 mysqlpp::BadOption Class Reference 20

5.5 mysqlpp::BadParamCount Class Reference 22

5.6 mysqlpp::BadQuery Class Reference 24

5.7 mysqlpp::BeecryptMutex Class Reference 27

ii CONTENTS

5.8 Comparable< T > Class Template Reference 29

5.9 mysqlpp::CompressOption Class Reference 32

5.10 mysqlpp::Connection Class Reference 33

5.11 mysqlpp::ConnectionFailed Class Reference 44

5.12 mysqlpp::ConnectionPool Class Reference 46

5.13 mysqlpp::ConnectTimeoutOption Class Reference 51

5.14 mysqlpp::DataOption< T > Class Template Reference 52

5.15 mysqlpp::Date Class Reference . 54

5.16 mysqlpp::DateTime Class Reference 58

5.17 mysqlpp::DBDriver Class Reference 63

5.18 mysqlpp::DBSelectionFailed Class Reference 79

5.19 mysqlpp::equal_list_b< Seq1, Seq2, Manip > Struct Template Reference 81

5.20 mysqlpp::equal_list_ba< Seq1, Seq2, Manip > Struct Template Ref-
erence . 84

5.21 mysqlpp::Exception Class Reference 87

5.22 mysqlpp::Field Class Reference . 89

5.23 mysqlpp::FieldNames Class Reference 92

5.24 mysqlpp::FieldTypes Class Reference 94

5.25 mysqlpp::FoundRowsOption Class Reference 95

5.26 mysqlpp::GuessConnectionOption Class Reference 96

5.27 mysqlpp::IgnoreSpaceOption Class Reference 97

5.28 mysqlpp::InitCommandOption Class Reference 98

5.29 mysqlpp::InteractiveOption Class Reference 99

5.30 mysqlpp::LocalFilesOption Class Reference 100

5.31 mysqlpp::LocalInfileOption Class Reference 101

5.32 mysqlpp::MultiResultsOption Class Reference 102

5.33 mysqlpp::MultiStatementsOption Class Reference 103

5.34 mysqlpp::MutexFailed Class Reference 104

5.35 mysqlpp::mysql_type_info Class Reference 105

5.36 mysqlpp::NamedPipeOption Class Reference 110

5.37 mysqlpp::NoExceptions Class Reference 111

Generated on Fri Feb 29 16:26:00 2008 for MySQL++ by Doxygen

CONTENTS iii

5.38 mysqlpp::NoSchemaOption Class Reference 113

5.39 mysqlpp::Null< Type, Behavior > Class Template Reference 114

5.40 mysqlpp::null_type Class Reference 119

5.41 mysqlpp::NullIsBlank Struct Reference 120

5.42 mysqlpp::NullIsNull Struct Reference 121

5.43 mysqlpp::NullIsZero Struct Reference 122

5.44 mysqlpp::ObjectNotInitialized Class Reference 123

5.45 mysqlpp::Option Class Reference 124

5.46 mysqlpp::OptionalExceptions Class Reference 126

5.47 mysqlpp::ProtocolOption Class Reference 129

5.48 mysqlpp::Query Class Reference . 130

5.49 mysqlpp::ReadDefaultFileOption Class Reference 156

5.50 mysqlpp::ReadDefaultGroupOption Class Reference 157

5.51 mysqlpp::ReadTimeoutOption Class Reference 158

5.52 mysqlpp::ReconnectOption Class Reference 159

5.53 mysqlpp::RefCountedPointer< T, Destroyer > Class Template Reference160

5.54 mysqlpp::RefCountedPointerDestroyer< T > Struct Template Reference166

5.55 mysqlpp::RefCountedPointerDestroyer< MYSQL_RES > Struct
Template Reference . 167

5.56 mysqlpp::ReportDataTruncationOption Class Reference 168

5.57 mysqlpp::ResultBase Class Reference 169

5.58 mysqlpp::Row Class Reference . 173

5.59 mysqlpp::ScopedLock Class Reference 187

5.60 mysqlpp::SecureAuthOption Class Reference 188

5.61 mysqlpp::SelfTestFailed Class Reference 189

5.62 mysqlpp::Set< Container > Class Template Reference 190

5.63 mysqlpp::SetCharsetDirOption Class Reference 191

5.64 mysqlpp::SetCharsetNameOption Class Reference 192

5.65 mysqlpp::SetClientIpOption Class Reference 193

5.66 mysqlpp::SharedMemoryBaseNameOption Class Reference 194

5.67 mysqlpp::SimpleResult Class Reference 195

Generated on Fri Feb 29 16:26:00 2008 for MySQL++ by Doxygen

iv CONTENTS

5.68 mysqlpp::SQLBuffer Class Reference 197

5.69 mysqlpp::SQLParseElement Struct Reference 200

5.70 mysqlpp::SQLQueryParms Class Reference 202

5.71 mysqlpp::SQLTypeAdapter Class Reference 206

5.72 mysqlpp::SslOption Class Reference 215

5.73 mysqlpp::StoreQueryResult Class Reference 217

5.74 mysqlpp::String Class Reference . 220

5.75 mysqlpp::TCPConnection Class Reference 232

5.76 mysqlpp::Time Class Reference . 236

5.77 mysqlpp::tiny_int< VT > Class Template Reference 240

5.78 mysqlpp::TooOld< ConnInfoT > Class Template Reference 244

5.79 mysqlpp::Transaction Class Reference 245

5.80 mysqlpp::TypeLookupFailed Class Reference 247

5.81 mysqlpp::UnixDomainSocketConnection Class Reference 249

5.82 mysqlpp::UseEmbeddedConnectionOption Class Reference 252

5.83 mysqlpp::UseQueryError Class Reference 253

5.84 mysqlpp::UseQueryResult Class Reference 254

5.85 mysqlpp::UseRemoteConnectionOption Class Reference 257

5.86 mysqlpp::value_list_b< Seq, Manip > Struct Template Reference . . 258

5.87 mysqlpp::value_list_ba< Seq, Manip > Struct Template Reference . . 260

5.88 mysqlpp::WindowsNamedPipeConnection Class Reference 262

5.89 mysqlpp::WriteTimeoutOption Class Reference 265

6 MySQL++ File Documentation 267

6.1 autoflag.h File Reference . 267

6.2 beemutex.h File Reference . 268

6.3 common.h File Reference . 270

6.4 comparable.h File Reference . 272

6.5 connection.h File Reference . 273

6.6 cpool.h File Reference . 275

6.7 custom.h File Reference . 276

Generated on Fri Feb 29 16:26:00 2008 for MySQL++ by Doxygen

CONTENTS v

6.8 datetime.h File Reference . 277

6.9 dbdriver.h File Reference . 279

6.10 exceptions.h File Reference . 280

6.11 field.h File Reference . 283

6.12 field_names.h File Reference . 285

6.13 field_types.h File Reference . 286

6.14 manip.h File Reference . 287

6.15 myset.h File Reference . 290

6.16 mysql++.h File Reference . 292

6.17 mystring.h File Reference . 295

6.18 noexceptions.h File Reference . 298

6.19 null.h File Reference . 300

6.20 options.h File Reference . 302

6.21 qparms.h File Reference . 306

6.22 query.h File Reference . 308

6.23 refcounted.h File Reference . 311

6.24 result.h File Reference . 312

6.25 row.h File Reference . 314

6.26 sql_buffer.h File Reference . 316

6.27 sql_types.h File Reference . 318

6.28 stadapter.h File Reference . 319

6.29 stream2string.h File Reference . 321

6.30 tcp_connection.h File Reference . 322

6.31 tiny_int.h File Reference . 323

6.32 transaction.h File Reference . 325

6.33 type_info.h File Reference . 326

6.34 uds_connection.h File Reference . 328

6.35 vallist.h File Reference . 329

6.36 wnp_connection.h File Reference 334

Generated on Fri Feb 29 16:26:00 2008 for MySQL++ by Doxygen

Chapter 1

MySQL++ Reference Manual

1.1 Getting Started

The best place to get started is the user manual. It provides a guide to the example
programs and more.

1.2 Major Classes

In MySQL++, the main user-facing classes are mysqlpp::Connection (p. 33),
mysqlpp::Query (p. 130), mysqlpp::Row (p. 173), mysqlpp::StoreQueryResult
(p. 217), and mysqlpp::UseQueryResult (p. 254).

In addition, MySQL++ has a mechanism called Specialized SQL Structures (SSQLS),
which allow you to create C++ structures that parallel the definition of the tables in your
database schema. These let you manipulate the data in your database using native C++
data structures. Programs using this feature often include very little SQL code, because
MySQL++ can generate most of what you need automatically when using SSQLSes.
There is a whole chapter in the user manual on how to use this feature of the library,
plus a section in the user manual’s tutorial chapter to introduce it. It’s possible to use
MySQL++ effectively without using SSQLS, but it sure makes some things a lot easier.

1.3 Major Files

The only two header files your program ever needs to include are mysql++.h, and
optionally custom.h (p. 276). (The latter implements the SSQLS mechanism.) All of
the other files are used within the library only.

2 MySQL++ Reference Manual

1.4 If You Have Questions...

If you want to email someone to ask questions about this library, we greatly prefer
that you send mail to the MySQL++ mailing list, which you can subscribe to here:
http://lists.mysql.com/plusplus

That mailing list is archived, so if you have questions,
do a search to see if the question has been asked before.

You may find people’s individual email addresses in
various files within the MySQL++ distribution. Please
do not send mail to them unless you are sending something
that is inherently personal. Questions that are about
MySQL++ usage may well be ignored if you send them to our
personal email accounts. Those of us still active in My-
SQL++ development monitor the mailing list, so you aren’t
getting any extra "coverage" by sending messages to those
addresses in addition to the mailing list.

1.5 Licensing

MySQL++ is licensed under the GNU Lesser General
Public License, which you should have received
with the distribution package in a file called
"LGPL" or "LICENSE". You can also view it here:
http://www.gnu.org/licenses/lgpl.html or receive a copy
by writing to Free Software Foundation, Inc., 51 Franklin
Street, Fifth Floor, Boston, MA 02110-1301, USA.

Generated on Fri Feb 29 16:26:00 2008 for MySQL++ by Doxygen

Chapter 2

MySQL++ Hierarchical Index

2.1 MySQL++ Class Hierarchy

This inheritance list is sorted roughly, but not
completely, alphabetically:

AutoFlag< T > . 13
mysqlpp::BeecryptMutex 27
Comparable< T > 29

mysqlpp::Date 54
mysqlpp::DateTime 58
mysqlpp::Time 236

Comparable< mysqlpp::Date > 29
Comparable< mysqlpp::DateTime > 29
Comparable< mysqlpp::Time > 29
mysqlpp::ConnectionPool 46
mysqlpp::DBDriver 63
mysqlpp::equal_list_b< Seq1, Seq2, Manip > 81
mysqlpp::equal_list_ba< Seq1, Seq2, Manip > 84
mysqlpp::Exception 87

mysqlpp::BadConversion 15
mysqlpp::BadFieldName 18
mysqlpp::BadOption 20
mysqlpp::BadParamCount 22
mysqlpp::BadQuery 24
mysqlpp::ConnectionFailed 44
mysqlpp::DBSelectionFailed 79
mysqlpp::MutexFailed 104
mysqlpp::ObjectNotInitialized 123
mysqlpp::SelfTestFailed 189

4 MySQL++ Hierarchical Index

mysqlpp::TypeLookupFailed 247
mysqlpp::UseQueryError 253

mysqlpp::Field . 89
mysqlpp::FieldNames 92
mysqlpp::FieldTypes 94
mysqlpp::mysql_type_info 105
mysqlpp::NoExceptions 111
mysqlpp::Null< Type, Behavior > 114
mysqlpp::null_type 119
mysqlpp::NullIsBlank 120
mysqlpp::NullIsNull 121
mysqlpp::NullIsZero 122
mysqlpp::Option 124

mysqlpp::CompressOption 32
mysqlpp::DataOption< T > 52

mysqlpp::ConnectTimeoutOption 51
mysqlpp::InitCommandOption 98
mysqlpp::InteractiveOption 99
mysqlpp::LocalFilesOption 100
mysqlpp::MultiResultsOption 102
mysqlpp::MultiStatementsOption 103
mysqlpp::NoSchemaOption 113
mysqlpp::ReadDefaultFileOption 156
mysqlpp::ReadDefaultGroupOption 157
mysqlpp::ReconnectOption 159
mysqlpp::ReportDataTruncationOption 168
mysqlpp::SetCharsetDirOption 191
mysqlpp::SetCharsetNameOption 192
mysqlpp::SetClientIpOption 193
mysqlpp::SharedMemoryBaseNameOption 194

mysqlpp::DataOption< bool > 52
mysqlpp::FoundRowsOption 95
mysqlpp::IgnoreSpaceOption 97
mysqlpp::SecureAuthOption 188

mysqlpp::DataOption< unsigned > 52
mysqlpp::LocalInfileOption 101
mysqlpp::ProtocolOption 129
mysqlpp::ReadTimeoutOption 158
mysqlpp::WriteTimeoutOption 265

mysqlpp::GuessConnectionOption 96
mysqlpp::NamedPipeOption 110
mysqlpp::SslOption 215
mysqlpp::UseEmbeddedConnectionOption 252
mysqlpp::UseRemoteConnectionOption 257

mysqlpp::OptionalExceptions 126

Generated on Fri Feb 29 16:26:00 2008 for MySQL++ by Doxygen

2.1 MySQL++ Class Hierarchy 5

mysqlpp::Connection 33
mysqlpp::TCPConnection 232
mysqlpp::UnixDomainSocketConnection 249
mysqlpp::WindowsNamedPipeConnection 262

mysqlpp::Query 130
mysqlpp::ResultBase 169

mysqlpp::StoreQueryResult 217
mysqlpp::UseQueryResult 254

mysqlpp::Row . 173
mysqlpp::RefCountedPointer< T, Destroyer > 160
mysqlpp::RefCountedPointerDestroyer< T > 166
mysqlpp::RefCountedPointerDestroyer< MYSQL_RES > . 167
mysqlpp::ScopedLock 187
mysqlpp::Set< Container > 190
mysqlpp::SimpleResult 195
mysqlpp::SQLBuffer 197
mysqlpp::SQLParseElement 200
mysqlpp::SQLQueryParms 202
mysqlpp::SQLTypeAdapter 206
mysqlpp::String 220
mysqlpp::tiny_int< VT > 240
mysqlpp::TooOld< ConnInfoT > 244
mysqlpp::Transaction 245
mysqlpp::value_list_b< Seq, Manip > 258
mysqlpp::value_list_ba< Seq, Manip > 260

Generated on Fri Feb 29 16:26:00 2008 for MySQL++ by Doxygen

6 MySQL++ Hierarchical Index

Generated on Fri Feb 29 16:26:00 2008 for MySQL++ by Doxygen

Chapter 3

MySQL++ Class Index

3.1 MySQL++ Class List

Here are the classes, structs, unions and interfaces with
brief descriptions:

AutoFlag< T > (A template for setting a flag on a variable as long as the
object that set it is in scope. Flag resets when object goes out of
scope. Works on anything that looks like bool) 13

mysqlpp::BadConversion (Exception (p. 87) thrown when a bad type
conversion is attempted) 15

mysqlpp::BadFieldName (Exception (p. 87) thrown when a requested
named field doesn’t exist) 18

mysqlpp::BadOption (Exception (p. 87) thrown when you pass an unrec-
ognized option to Connection::set_option() (p. 41)) 20

mysqlpp::BadParamCount (Exception (p. 87) thrown when not enough
query parameters are provided) 22

mysqlpp::BadQuery (Exception (p. 87) thrown when the database server
encounters a problem while processing your query) 24

mysqlpp::BeecryptMutex (Wrapper around platform-specific mutexes) 27
Comparable< T > (Mix-in that gives its subclass a full set of comparison

operators) . 29
mysqlpp::CompressOption (Enable data compression on the connection) 32
mysqlpp::Connection (Manages the connection to the database server) 33
mysqlpp::ConnectionFailed (Exception (p. 87) thrown when there is a

problem related to the database server connection) 44
mysqlpp::ConnectionPool (Manages a pool of connections for programs

that need more than one Connection (p. 33) object at a time, but
can’t predict how many they need in advance) 46

8 MySQL++ Class Index

mysqlpp::ConnectTimeoutOption (Change Connection::connect()
(p. 38) default timeout) 51

mysqlpp::DataOption< T > (Define abstract interface for all ∗Options
that take a lone scalar as an argument) 52

mysqlpp::Date (C++ form of SQL’s DATE type) 54
mysqlpp::DateTime (C++ form of SQL’s DATETIME type) 58
mysqlpp::DBDriver (Provides a thin abstraction layer over the underly-

ing database client library) 63
mysqlpp::DBSelectionFailed (Exception (p. 87) thrown when the pro-

gram tries to select a new database and the database server
refuses for some reason) 79

mysqlpp::equal_list_b< Seq1, Seq2, Manip > (Same as equal_list_ba
(p. 84), plus the option to have some elements of the equals
clause suppressed) 81

mysqlpp::equal_list_ba< Seq1, Seq2, Manip > (Holds two lists of items,
typically used to construct a SQL "equals clause") 84

mysqlpp::Exception (Base class for all MySQL++ custom exceptions) . 87
mysqlpp::Field (Class to hold information about a SQL field) 89
mysqlpp::FieldNames (Holds a list of SQL field names) 92
mysqlpp::FieldTypes (A vector of SQL field types) 94
mysqlpp::FoundRowsOption (Make Query::affected_rows() (p. 130) re-

turn number of matched rows) 95
mysqlpp::GuessConnectionOption (Allow C API to guess what kind of

connection to use) 96
mysqlpp::IgnoreSpaceOption (Allow spaces after function names in

queries) . 97
mysqlpp::InitCommandOption (Give SQL executed on connect) . . 98
mysqlpp::InteractiveOption (Assert that this is an interactive program) 99
mysqlpp::LocalFilesOption (Enable LOAD DATA LOCAL statement) 100
mysqlpp::LocalInfileOption (Enable LOAD LOCAL INFILE statement) 101
mysqlpp::MultiResultsOption (Enable multiple result sets in a reply) . 102
mysqlpp::MultiStatementsOption (Enable multiple queries in a request

to the server) 103
mysqlpp::MutexFailed (Exception (p. 87) thrown when a Beecrypt-

Mutex (p. 27) object fails) 104
mysqlpp::mysql_type_info (SQL field type information) 105
mysqlpp::NamedPipeOption (Suggest use of named pipes) 110
mysqlpp::NoExceptions (Disable exceptions in an object derived from

OptionalExceptions (p. 126)) 111
mysqlpp::NoSchemaOption (Disable db.tbl.col syntax in queries) . . 113
mysqlpp::Null< Type, Behavior > (Class for holding data from a SQL

column with the NULL attribute) 114
mysqlpp::null_type (The type of the global mysqlpp::null object) . . 119
mysqlpp::NullIsBlank (Class for objects that define SQL null as a blank

C string) . 120

Generated on Fri Feb 29 16:26:00 2008 for MySQL++ by Doxygen

3.1 MySQL++ Class List 9

mysqlpp::NullIsNull (Class for objects that define SQL null in terms of
MySQL++’s null_type (p. 119)) 121

mysqlpp::NullIsZero (Class for objects that define SQL null as 0) . . 122
mysqlpp::ObjectNotInitialized (Exception (p. 87) thrown when you try

to use an object that isn’t completely initialized) 123
mysqlpp::Option (Define abstract interface for all ∗Option subclasses) 124
mysqlpp::OptionalExceptions (Interface allowing a class to have op-

tional exceptions) 126
mysqlpp::ProtocolOption (Set (p. 190) type of protocol to use) . . . 129
mysqlpp::Query (A class for building and executing SQL queries) . . 130
mysqlpp::ReadDefaultFileOption (Override use of my.cnf) 156
mysqlpp::ReadDefaultGroupOption (Override use of my.cnf) . . . 157
mysqlpp::ReadTimeoutOption (Set (p. 190) timeout for IPC data reads) 158
mysqlpp::ReconnectOption (Enable automatic reconnection to server) 159
mysqlpp::RefCountedPointer< T, Destroyer > (Creates an object that

acts as a reference-counted pointer to another object) . . . 160
mysqlpp::RefCountedPointerDestroyer< T > (Functor to call delete on

the pointer you pass to it) 166
mysqlpp::RefCountedPointerDestroyer< MYSQL_RES > (Functor to

call mysql_free_result() on the pointer you pass to it) . . . 167
mysqlpp::ReportDataTruncationOption (Set (p. 190) reporting of data

truncation errors) 168
mysqlpp::ResultBase (Base class for StoreQueryResult (p. 217) and Use-

QueryResult (p. 254)) 169
mysqlpp::Row (Manages rows from a result set) 173
mysqlpp::ScopedLock (Wrapper around BeecryptMutex (p. 27) to add

scope-bound locking and unlocking) 187
mysqlpp::SecureAuthOption (Enforce use of secure authentication, re-

fusing connection if not available) 188
mysqlpp::SelfTestFailed (Used within MySQL++’s test harness only) . 189
mysqlpp::Set< Container > (A special std::set derivative for holding

MySQL data sets) 190
mysqlpp::SetCharsetDirOption (Give path to charset definition files) . 191
mysqlpp::SetCharsetNameOption (Give name of default charset) . . 192
mysqlpp::SetClientIpOption (Fake client IP address when connecting to

embedded server) 193
mysqlpp::SharedMemoryBaseNameOption (Set (p. 190) name of shmem

segment for IPC) 194
mysqlpp::SimpleResult (Holds information about the result of queries

that don’t return rows) 195
mysqlpp::SQLBuffer (Holds SQL data in string form plus type infor-

mation for use in converting the string to compatible C++ data
types) . 197

mysqlpp::SQLParseElement (Used within Query (p. 130) to hold ele-
ments for parameterized queries) 200

Generated on Fri Feb 29 16:26:00 2008 for MySQL++ by Doxygen

10 MySQL++ Class Index

mysqlpp::SQLQueryParms (This class holds the parameter values for
filling template queries) 202

mysqlpp::SQLTypeAdapter (Converts many different data types to
strings suitable for use in SQL queries) 206

mysqlpp::SslOption (Specialized option for handling SSL parameters) 215
mysqlpp::StoreQueryResult (StoreQueryResult (p. 217) set type for

"store" queries) 217
mysqlpp::String (A std::string work-alike that can convert itself from

SQL text data formats to C++ data types) 220
mysqlpp::TCPConnection (Specialization of Connection (p.33) for

TCP/IP) . 232
mysqlpp::Time (C++ form of SQL’s TIME type) 236
mysqlpp::tiny_int< VT > (Class for holding an SQL TINYINT value) 240
mysqlpp::TooOld< ConnInfoT > (Functor to test whether a given

ConnectionInfo object is "too old") 244
mysqlpp::Transaction (Helper object for creating exception-safe SQL

transactions) 245
mysqlpp::TypeLookupFailed (Thrown from the C++ to SQL data type

conversion routine when it can’t figure out how to map the type) 247
mysqlpp::UnixDomainSocketConnection (Specialization of

Connection (p.33) for Unix domain sockets) 249
mysqlpp::UseEmbeddedConnectionOption (Connect to embedded

server in preference to remote server) 252
mysqlpp::UseQueryError (Exception (p. 87) thrown when something

goes wrong in processing a "use" query) 253
mysqlpp::UseQueryResult (StoreQueryResult (p. 217) set type for "use"

queries) . 254
mysqlpp::UseRemoteConnectionOption (Connect to remote server in

preference to embedded server) 257
mysqlpp::value_list_b< Seq, Manip > (Same as value_list_ba (p. 260),

plus the option to have some elements of the list suppressed) . 258
mysqlpp::value_list_ba< Seq, Manip > (Holds a list of items, typically

used to construct a SQL "value list") 260
mysqlpp::WindowsNamedPipeConnection (Specialization of

Connection (p.33) for Windows named pipes) 262
mysqlpp::WriteTimeoutOption (Set (p. 190) timeout for IPC data reads) 265

Generated on Fri Feb 29 16:26:00 2008 for MySQL++ by Doxygen

Chapter 4

MySQL++ File Index

4.1 MySQL++ File List

Here is a list of all documented files with brief
descriptions:

autoflag.h (Defines a template for setting a flag within a given variable
scope, and resetting it when exiting that scope) 267

beemutex.h (MUTually EXclusive lock class) 268
common.h (This file includes top-level definitions for use both internal to

the library, and outside it. Contrast mysql++.h) 270
comparable.h (Declares the Comparable<T> mixin) 272
connection.h (Declares the Connection class) 273
cpool.h (Declares the ConnectionPool class) 275
custom.h (Backwards-compatibility header; loads ssqls.h) 276
datetime.h (Declares classes to add SQL-compatible date and time types

to C++’s type system) 277
dbdriver.h (Declares the DBDriver class) 279
exceptions.h (Declares the MySQL++-specific exception classes) . . . 280
field.h (Declares the Field and Fields classes) 283
field_names.h (Declares a class to hold a list of field names) 285
field_types.h (Declares a class to hold a list of SQL field type info) . . 286
manip.h (Declares the Query stream manipulators and operators) . . 287
myset.h (Declares templates for generating custom containers used else-

where in the library) 290
mysql++.h (The main MySQL++ header file) 292
mystring.h (Declares String class, MySQL++’s generic std::string-like

class, used for holding data received from the database server) 295
noexceptions.h (Declares interface that allows exceptions to be optional) 298

12 MySQL++ File Index

null.h (Declares classes that implement SQL "null" semantics within
C++’s type system) 300

options.h (Declares the Option class hierarchy, used to implement con-
nection options in Connection and DBDriver classes) . . . 302

qparms.h (Declares the template query parameter-related stuff) . . . 306
query.h (Defines a class for building and executing SQL queries) . . 308
refcounted.h (Declares the RefCountedPointer template) 311
result.h (Declares classes for holding information about SQL query re-

sults) . 312
row.h (Declares the classes for holding row data from a result set) . . 314
sql_buffer.h (Declares the SQLBuffer class) 316
sql_types.h (Declares the closest C++ equivalent of each MySQL column

type) . 318
stadapter.h (Declares the SQLTypeAdapter class) 319
stream2string.h (Declares an adapter that converts something that can

be inserted into a C++ stream into a std::string type) . . . 321
tcp_connection.h (Declares the TCPConnection class) 322
tiny_int.h (Declares class for holding a SQL TINYINT) 323
transaction.h (Declares the Transaction class) 325
type_info.h (Declares classes that provide an interface between the SQL

and C++ type systems) 326
uds_connection.h (Declares the UnixDomainSocketConnection class) . 328
vallist.h (Declares templates for holding lists of values) 329
wnp_connection.h (Declares the WindowsNamedPipeConnection class) 334

Generated on Fri Feb 29 16:26:00 2008 for MySQL++ by Doxygen

Chapter 5

MySQL++ Class
Documentation

5.1 AutoFlag< T > Class Template Reference

A template for setting a flag on a variable as long as
the object that set it is in scope. Flag resets when
object goes out of scope. Works on anything that looks
like bool.

#include <autoflag.h>

Collaboration diagram for AutoFlag< T >:

Public Member Functions

• AutoFlag (T &ref)
Constructor: sets ref to true.

• ∼AutoFlag ()
Destructor: sets referent passed to ctor to false.

14 MySQL++ Class Documentation

5.1.1 Detailed Description

template<class T = bool> class AutoFlag< T >

A template for setting a flag on a variable as long as
the object that set it is in scope. Flag resets when
object goes out of scope. Works on anything that looks
like bool.

The documentation for this class was generated from the
following file:

• autoflag.h

Generated on Fri Feb 29 16:26:00 2008 for MySQL++ by Doxygen

5.2 mysqlpp::BadConversion Class Reference 15

5.2 mysqlpp::BadConversion Class Reference

Exception (p.87) thrown when a bad type conversion is
attempted.

#include <exceptions.h>

Inheritance diagram for mysqlpp::BadConversion:

Collaboration diagram for mysqlpp::BadConversion:

Public Member Functions

• BadConversion (const char ∗tn, const char ∗d, size_t r, size_t a)

Create exception object, building error string dynamically.

• BadConversion (const std::string &w, const char ∗tn, const char ∗d, size_t
r, size_t a)

Create exception object, given completed error string.

• BadConversion (const char ∗w="")

Create exception object, with error string only.

• ∼BadConversion () throw ()

Destroy exception.

Generated on Fri Feb 29 16:26:00 2008 for MySQL++ by Doxygen

16 MySQL++ Class Documentation

Public Attributes

• const char ∗ type_name
name of type we tried to convert to

• std::string data
string form of data we tried to convert

• size_t retrieved
documentation needed!

• size_t actual_size
documentation needed!

5.2.1 Detailed Description

Exception (p.87) thrown when a bad type conversion is
attempted.

5.2.2 Constructor & Destructor Documentation

5.2.2.1 mysqlpp::BadConversion::BadConversion (const char ∗ tn, const char ∗
d, size_t r, size_t a) [inline]

Create exception object, building error string
dynamically.

Parameters:

tn type name we tried to convert to

d string form of data we tried to convert

r ??

a ??

5.2.2.2 mysqlpp::BadConversion::BadConversion (const std::string & w, const
char ∗ tn, const char ∗ d, size_t r, size_t a) [inline]

Create exception object, given completed error string.

Parameters:

w the "what" error string

Generated on Fri Feb 29 16:26:00 2008 for MySQL++ by Doxygen

5.2 mysqlpp::BadConversion Class Reference 17

tn type name we tried to convert to

d string form of data we tried to convert

r ??

a ??

5.2.2.3 mysqlpp::BadConversion::BadConversion (const char ∗ w = "")
[inline, explicit]

Create exception object, with error string only.

Parameters:

w the "what" error string

All other data members are initialize to default values

The documentation for this class was generated from the
following file:

• exceptions.h

Generated on Fri Feb 29 16:26:00 2008 for MySQL++ by Doxygen

18 MySQL++ Class Documentation

5.3 mysqlpp::BadFieldName Class Reference

Exception (p.87) thrown when a requested named field
doesn’t exist.

#include <exceptions.h>

Inheritance diagram for mysqlpp::BadFieldName:

Collaboration diagram for mysqlpp::BadFieldName:

Public Member Functions

• BadFieldName (const char ∗bad_field)

Create exception object.

• ∼BadFieldName () throw ()

Destroy exception.

5.3.1 Detailed Description

Exception (p.87) thrown when a requested named field
doesn’t exist.

Thrown by Row::lookup_by_name() when you pass a field
name that isn’t in the result set.

Generated on Fri Feb 29 16:26:00 2008 for MySQL++ by Doxygen

5.3 mysqlpp::BadFieldName Class Reference 19

5.3.2 Constructor & Destructor Documentation

5.3.2.1 mysqlpp::BadFieldName::BadFieldName (const char ∗ bad_field)
[inline, explicit]

Create exception object.

Parameters:

bad_field name of field the database server didn’t like

The documentation for this class was generated from the
following file:

• exceptions.h

Generated on Fri Feb 29 16:26:00 2008 for MySQL++ by Doxygen

20 MySQL++ Class Documentation

5.4 mysqlpp::BadOption Class Reference

Exception (p.87) thrown when you pass an unrecognized
option to Connection::set_option() (p.41).

#include <exceptions.h>

Inheritance diagram for mysqlpp::BadOption:

Collaboration diagram for mysqlpp::BadOption:

Public Member Functions

• BadOption (const char ∗w, const std::type_info &ti)
Create exception object, taking C string.

• BadOption (const std::string &w, const std::type_info &ti)
Create exception object, taking C++ string.

• const std::type_info & what_option () const
Return type information about the option that failed.

5.4.1 Detailed Description

Exception (p.87) thrown when you pass an unrecognized
option to Connection::set_option() (p.41).

Generated on Fri Feb 29 16:26:00 2008 for MySQL++ by Doxygen

5.4 mysqlpp::BadOption Class Reference 21

5.4.2 Member Function Documentation

5.4.2.1 const std::type_info& mysqlpp::BadOption::what_option () const
[inline]

Return type information about the option that failed.

Because each option has its own C++ type, this lets
you distinguish among BadOption (p.20) exceptions
programmatically.

The documentation for this class was generated from the
following file:

• exceptions.h

Generated on Fri Feb 29 16:26:00 2008 for MySQL++ by Doxygen

22 MySQL++ Class Documentation

5.5 mysqlpp::BadParamCount Class Reference

Exception (p.87) thrown when not enough query parameters
are provided.

#include <exceptions.h>

Inheritance diagram for mysqlpp::BadParamCount:

Collaboration diagram for mysqlpp::BadParamCount:

Public Member Functions

• BadParamCount (const char ∗w="")
Create exception object.

• ∼BadParamCount () throw ()
Destroy exception.

5.5.1 Detailed Description

Exception (p.87) thrown when not enough query parameters
are provided.

This is used in handling template queries.

The documentation for this class was generated from the
following file:

Generated on Fri Feb 29 16:26:00 2008 for MySQL++ by Doxygen

5.5 mysqlpp::BadParamCount Class Reference 23

• exceptions.h

Generated on Fri Feb 29 16:26:00 2008 for MySQL++ by Doxygen

24 MySQL++ Class Documentation

5.6 mysqlpp::BadQuery Class Reference

Exception (p.87) thrown when the database server
encounters a problem while processing your query.

#include <exceptions.h>

Inheritance diagram for mysqlpp::BadQuery:

Collaboration diagram for mysqlpp::BadQuery:

Public Member Functions

• BadQuery (const char ∗w="", int e=0)
Create exception object.

• BadQuery (const std::string &w, int e=0)
Create exception object.

• int errnum () const
Return the error number corresponding to the error message returned by what()
(p. 88).

5.6.1 Detailed Description

Exception (p.87) thrown when the database server
encounters a problem while processing your query.

Generated on Fri Feb 29 16:26:00 2008 for MySQL++ by Doxygen

5.6 mysqlpp::BadQuery Class Reference 25

Unlike most other MySQL++ exceptions, which carry just
an error message, this type carries an error number to
preserve Connection::errnum() (p.34)’s return value at
the point the exception is thrown. We do this because
when using the Transaction (p.245) class, the rollback
process that occurs during stack unwinding issues a query
to the database server, overwriting the error value.
This rollback should always succeed, so this effect can
fool code that relies on Connection::errnum() (p.34) into
believing that there was no error.

Beware that in older versions of MySQL++, this was
effectively the generic exception type. (This is most
especially true in v1.7.x, but it continued to a lesser
extent through the v2.x series.) When converting old
code to new versions of MySQL++, it’s therefore possible
to get seemingly "new" exceptions thrown, which could
crash your program if you don’t also catch a more generic
type like mysqlpp::Exception (p.87) or std::exception.

5.6.2 Constructor & Destructor Documentation

5.6.2.1 mysqlpp::BadQuery::BadQuery (const char ∗ w = "", int e = 0)
[inline, explicit]

Create exception object.

Parameters:

w explanation for why the exception was thrown

e the error number from the underlying database API

5.6.2.2 mysqlpp::BadQuery::BadQuery (const std::string & w, int e = 0)
[inline, explicit]

Create exception object.

Parameters:

w explanation for why the exception was thrown

e the error number from the underlying database API

Generated on Fri Feb 29 16:26:00 2008 for MySQL++ by Doxygen

26 MySQL++ Class Documentation

5.6.3 Member Function Documentation

5.6.3.1 int mysqlpp::BadQuery::errnum () const [inline]

Return the error number corresponding to the error
message returned by what() (p.88).

This may return the same value as Connection::errnum()
(p.34), but not always. See the overview documentation
for this class for the reason for the difference.

The documentation for this class was generated from the
following file:

• exceptions.h

Generated on Fri Feb 29 16:26:00 2008 for MySQL++ by Doxygen

5.7 mysqlpp::BeecryptMutex Class Reference 27

5.7 mysqlpp::BeecryptMutex Class Reference

Wrapper around platform-specific mutexes.

#include <beemutex.h>

Public Member Functions

• BeecryptMutex () throw (MutexFailed)

Create the mutex object.

• ∼BeecryptMutex ()

Destroy the mutex.

• void lock () throw (MutexFailed)

Acquire the mutex, blocking if it can’t be acquired immediately.

• bool trylock () throw (MutexFailed)

Acquire the mutex immediately and return true, or return false if it would have to
block to acquire the mutex.

• void unlock () throw (MutexFailed)

Release the mutex.

5.7.1 Detailed Description

Wrapper around platform-specific mutexes.

This class is only intended to be used within the
library. We don’t really want to support this as a
general purpose class. If it works for you as-is, that’s
great, we won’t try to stop you. But if you run into
a problem that doesn’t affect MySQL++ itself, we’re not
likely to bother enhancing this class to fix the problem.

5.7.2 Constructor & Destructor Documentation

5.7.2.1 mysqlpp::BeecryptMutex::BeecryptMutex () throw (MutexFailed)

Create the mutex object.

Generated on Fri Feb 29 16:26:00 2008 for MySQL++ by Doxygen

28 MySQL++ Class Documentation

Throws a MutexFailed (p.104) exception if we can’t
acquire the lock for some reason. The exception contains
a message saying why.

5.7.2.2 mysqlpp::BeecryptMutex::∼BeecryptMutex ()

Destroy the mutex.

Failures are quietly ignored.

The documentation for this class was generated from the
following files:

• beemutex.h
• beemutex.cpp

Generated on Fri Feb 29 16:26:00 2008 for MySQL++ by Doxygen

5.8 Comparable< T > Class Template Reference 29

5.8 Comparable< T > Class Template Reference

Mix-in that gives its subclass a full set of comparison
operators.

#include <comparable.h>

Inheritance diagram for Comparable< T >:

Public Member Functions

• bool operator== (const T &other) const
Returns true if "other" is equal to this object.

• bool operator!= (const T &other) const
Returns true if "other" is not equal to this object.

• bool operator< (const T &other) const
Returns true if "other" is less than this object.

• bool operator<= (const T &other) const
Returns true if "other" is less than or equal to this object.

• bool operator> (const T &other) const
Returns true if "other" is greater than this object.

• bool operator>= (const T &other) const
Returns true if "other" is greater than or equal to this object.

Protected Member Functions

• virtual ∼Comparable ()

Generated on Fri Feb 29 16:26:00 2008 for MySQL++ by Doxygen

30 MySQL++ Class Documentation

Destroy object.

• virtual int compare (const T &other) const =0
Compare this object to another of the same type.

5.8.1 Detailed Description

template<class T> class Comparable< T >

Mix-in that gives its subclass a full set of comparison
operators.

Simply by inheriting publically from this and
implementing compare() (p.30), the subclass gains a full
set of comparison operators, because all of the operators
are implemented in terms of compare() (p.30).

5.8.2 Constructor & Destructor Documentation

5.8.2.1 template<class T> virtual Comparable< T >::∼Comparable ()
[inline, protected, virtual]

Destroy object.

This class has nothing to destroy, but declaring the
dtor virtual placates some compilers set to high
warning levels. Protecting it ensures you can’t delete
subclasses through base class pointers, which makes no
sense because this class isn’t made for polymorphism.
It’s just a mixin.

5.8.3 Member Function Documentation

5.8.3.1 template<class T> virtual int Comparable< T >::compare (const T &
other) const [protected, pure virtual]

Compare this object to another of the same type.

Returns < 0 if this object is "before" the other, 0 of
they are equal, and > 0 if this object is "after" the
other.

The documentation for this class was generated from the
following file:

Generated on Fri Feb 29 16:26:00 2008 for MySQL++ by Doxygen

5.8 Comparable< T > Class Template Reference 31

• comparable.h

Generated on Fri Feb 29 16:26:00 2008 for MySQL++ by Doxygen

32 MySQL++ Class Documentation

5.9 mysqlpp::CompressOption Class Reference

Enable data compression on the connection.

#include <options.h>

Inheritance diagram for mysqlpp::CompressOption:

Collaboration diagram for mysqlpp::CompressOption:

5.9.1 Detailed Description

Enable data compression on the connection.

The documentation for this class was generated from the
following file:

• options.h

Generated on Fri Feb 29 16:26:00 2008 for MySQL++ by Doxygen

5.10 mysqlpp::Connection Class Reference 33

5.10 mysqlpp::Connection Class Reference

Manages the connection to the database server.

#include <connection.h>

Inheritance diagram for mysqlpp::Connection:

Collaboration diagram for mysqlpp::Connection:

Public Member Functions

• Connection (bool te=true)
Create object without connecting to the database server.

• Connection (const char ∗db, const char ∗server=0, const char ∗user=0, const
char ∗password=0, unsigned int port=0)

Create object and connect to database server in one step.

• Connection (const Connection &other)
Establish a new connection using the same parameters as an existing connection.

• virtual ∼Connection ()
Destroy object.

• std::string client_version () const
Get version of library underpinning the current database driver.

• virtual bool connect (const char ∗db=0, const char ∗server=0, const char
∗user=0, const char ∗password=0, unsigned int port=0)

Generated on Fri Feb 29 16:26:00 2008 for MySQL++ by Doxygen

34 MySQL++ Class Documentation

Connect to database after object is created.

• bool connected () const
Returns true if connection was established successfully.

• ulonglong count_rows (const std::string &table)
Returns the number of rows in a table.

• bool create_db (const std::string &db)
Ask the database server to create a database.

• void disconnect ()
Drop the connection to the database server.

• DBDriver ∗ driver ()
Returns a reference to the current database driver.

• bool drop_db (const std::string &db)
Asks the database server to drop (destroy) a database.

• int errnum ()
Return last error number associated with this connection.

• const char ∗ error () const
Return error message for last error associated with this connection.

• std::string ipc_info () const
Get information about the IPC connection to the database server.

• bool kill (unsigned long tid) const
Kill a database server thread.

• operator private_bool_type () const
Test whether any error has occurred within the object.

• Connection & operator= (const Connection &rhs)
Copy an existing Connection (p. 33) object’s state into this object.

• bool ping ()
"Pings" the database server

• int protocol_version () const

Generated on Fri Feb 29 16:26:00 2008 for MySQL++ by Doxygen

5.10 mysqlpp::Connection Class Reference 35

Returns version number of the protocol the database driver uses to communicate
with the server.

• Query query (const char ∗qstr=0)
Return a new query object.

• Query query (const std::string &qstr)
Return a new query object.

• bool select_db (const std::string &db)
Change to a different database managed by the database server we are connected
to.

• std::string server_version () const
Get the database server’s version string.

• bool set_option (Option ∗o)
Sets a connection option.

• bool shutdown ()
Ask database server to shut down.

• std::string server_status () const
Returns information about database server’s status.

• bool thread_aware () const
Returns true if both MySQL++ and database driver we’re using were compiled with
thread awareness.

• void thread_end ()
Tells the underlying database driver that this thread is done using the library.

• unsigned long thread_id ()
Returns the database server’s thread ID for this connection.

• bool thread_start ()
Tells the underlying database driver that the current thread is now using its services.

Protected Member Functions

• void build_error_message (const char ∗core)

Generated on Fri Feb 29 16:26:00 2008 for MySQL++ by Doxygen

36 MySQL++ Class Documentation

Build an error message in the standard form used whenever one of the methods
can’t succeed because we’re not connected to the database server.

• void copy (const Connection &other)
Establish a new connection as a copy of an existing one.

• bool parse_ipc_method (const char ∗server, std::string &host, unsigned int
&port, std::string &socket_name)

Extract elements from the server parameter in formats suitable for passing to DB-
Driver::connect() (p. 69).

Protected Attributes

• std::string error_message_
MySQL++ specific error, if any.

5.10.1 Detailed Description

Manages the connection to the database server.

This class is a thick wrapper around DBDriver (p.63),
adding high-level error handling, utility functions, and
abstraction away from underlying C API details.

5.10.2 Constructor & Destructor Documentation

5.10.2.1 mysqlpp::Connection::Connection (bool te = true)

Create object without connecting to the database server.

Parameters:

te if true, exceptions are thrown on errors

5.10.2.2 mysqlpp::Connection::Connection (const char ∗ db, const char ∗ server
= 0, const char ∗ user = 0, const char ∗ password = 0, unsigned int port
= 0)

Create object and connect to database server in one step.

This constructor allows you to most fully specify the
options used when connecting to the database server.

Generated on Fri Feb 29 16:26:00 2008 for MySQL++ by Doxygen

5.10 mysqlpp::Connection Class Reference 37

Parameters:

db name of database to select upon connection

server specifies the IPC method and parameters for
contacting the server; see below for details

user user name to log in under, or 0 to use the user
name this program is running under

password password to use when logging in

port TCP port number database server is listening on,
or 0 to use default value; note that you may also
give this as part of the server parameter

The server parameter can be any of several different
forms:

• 0: Let the database driver decide how to connect;
usually some sort of localhost IPC method.

• ".": On Windows, this means named pipes, if the
server supports it

• "/some/domain/socket/path": If the passed string doesn’t
match one of the previous alternatives and we’re on
a system that supports Unix domain sockets, MySQL++
will test it to see if it names one, and use it if we
have permission.

• "host.name.or.ip:port": If the previous test fails, or
if the system doesn’t support Unix domain sockets at
all, it assumes the string is some kind of network
address, optionally followed by a colon and port.
The name can be in dotted quad form, a host name,
or a domain name. The port can either be a TCP/IP
port number or a symbolic service name. If a port
or service name is given here and a nonzero value
is passed for the port parameter, the latter takes
precedence.

5.10.2.3 mysqlpp::Connection::Connection (const Connection & other)

Establish a new connection using the same parameters as
an existing connection.

Parameters:

other existing Connection (p.33) object

Generated on Fri Feb 29 16:26:00 2008 for MySQL++ by Doxygen

38 MySQL++ Class Documentation

5.10.3 Member Function Documentation

5.10.3.1 bool mysqlpp::Connection::connect (const char ∗ db = 0, const char ∗
server = 0, const char ∗ user = 0, const char ∗ password = 0, unsigned
int port = 0) [virtual]

Connect to database after object is created.

It’s better to use the connect-on-create constructor if
you can. See its documentation for the meaning of these
parameters.

If you call this method on an object that is already
connected to a database server, the previous connection
is dropped and a new connection is established.

5.10.3.2 bool mysqlpp::Connection::connected () const

Returns true if connection was established successfully.

Returns:

true if connection was established successfully

5.10.3.3 void mysqlpp::Connection::copy (const Connection & other)
[protected]

Establish a new connection as a copy of an existing one.

Parameters:

other the connection to copy

5.10.3.4 ulonglong mysqlpp::Connection::count_rows (const std::string &
table)

Returns the number of rows in a table.

Parameters:

table name of table whose rows you want counted

This is syntactic sugar for a SELECT COUNT(∗) FROM table
SQL query.

Generated on Fri Feb 29 16:26:00 2008 for MySQL++ by Doxygen

5.10 mysqlpp::Connection Class Reference 39

5.10.3.5 bool mysqlpp::Connection::create_db (const std::string & db)

Ask the database server to create a database.

Parameters:

db name of database to create

Returns:

true if database was created successfully

5.10.3.6 bool mysqlpp::Connection::drop_db (const std::string & db)

Asks the database server to drop (destroy) a database.

Parameters:

db name of database to destroy

Returns:

true if database was dropped successfully

5.10.3.7 const char ∗ mysqlpp::Connection::error () const

Return error message for last error associated with this
connection.

Returns either a MySQL++-specific error message if
one exists, or one from the current database driver
otherwise.

5.10.3.8 std::string mysqlpp::Connection::ipc_info () const

Get information about the IPC connection to the database
server.

String (p.220) contains info about type of connection
(e.g. TCP/IP, named pipe, Unix socket...) and the
server hostname.

5.10.3.9 bool mysqlpp::Connection::kill (unsigned long tid) const

Kill a database server thread.

Generated on Fri Feb 29 16:26:00 2008 for MySQL++ by Doxygen

40 MySQL++ Class Documentation

See also:

thread_id() (p.42)

5.10.3.10 mysqlpp::Connection::operator private_bool_type () const
[inline]

Test whether any error has occurred within the object.

Allows the object to be used in bool context, like this:

///

Prior to MySQL++ v3, the object was always falsy when we
weren’t connected. Now a true return simply indicates
a lack of errors. If you’ve been using this to test
for whether the connection is still up, you need to call
connected() (p.38) instead.

5.10.3.11 bool mysqlpp::Connection::ping ()

"Pings" the database server

Return values:

true if server is responding

false if either we already know the connection is down
and cannot re-establish it, or if the server
did not respond to the ping and we could not
re-establish the connection.

5.10.3.12 Query mysqlpp::Connection::query (const std::string & qstr)

Return a new query object.

Parameters:

qstr initial query string

Generated on Fri Feb 29 16:26:00 2008 for MySQL++ by Doxygen

5.10 mysqlpp::Connection Class Reference 41

5.10.3.13 Query mysqlpp::Connection::query (const char ∗ qstr = 0)

Return a new query object.

The returned query object is tied to this connection
object, so when you call a method like execute() (p.140)
on that object, the query is sent to the server this
object is connected to.

Parameters:

qstr an optional query string for populating the new
Query (p.130) object

5.10.3.14 bool mysqlpp::Connection::select_db (const std::string & db)

Change to a different database managed by the database
server we are connected to.

Parameters:

db database to switch to

Return values:

true if we changed databases successfully

5.10.3.15 bool mysqlpp::Connection::set_option (Option ∗ o)

Sets a connection option.

Parameters:

o pointer to any derivative of Option (p.124)
allocated on the heap

Objects passed to this method and successfully set
will be released when this Connection (p.33) object is
destroyed. If an error occurs while setting the option
the object will be deleted immediately.

Because there are so many Option (p.124) subclasses, the
actual effect of this function has a wide range. This
mechanism abstracts away many things that are unrelated
down at the database driver level, hiding them behind a
coherent, type-safe interface.

Generated on Fri Feb 29 16:26:00 2008 for MySQL++ by Doxygen

42 MySQL++ Class Documentation

The rules about which options can be set, when, are up to
the underlying database driver. Some must be set before
the connection is established because they can only be
used during that connection setup process. Others can
be set at any time after the connection comes up. If you
get it wrong, you’ll get a BadOption (p.20) exception.

Return values:

true if option was successfully set

5.10.3.16 unsigned long mysqlpp::Connection::thread_id ()

Returns the database server’s thread ID for this
connection.

This has nothing to do with threading on the client side.
The only thing you can do with this value is pass it to
kill() (p.39).

5.10.3.17 bool mysqlpp::Connection::thread_start ()

Tells the underlying database driver that the current
thread is now using its services.

It’s not necessary to call this from the thread that
creates the connection as it’s done automatically. This
method exists for times when multiple threads may use
this object; it allows the underlying database driver to
set up any per-thread data structures it needs.

The MySQL++ user manual’s chapter on threads details
two major strategies for dealing with connections in the
face of threads. The Connection-per-thread option frees
you from ever having to call this method. The other
documented strategy is to use ConnectionPool (p.46),
which opens the possibility for one thread to create a
connection that another uses, so you do need to call this
method in that case, or with any other similar strategy.

Return values:

True if there was no problem

The documentation for this class was generated from the
following files:

Generated on Fri Feb 29 16:26:00 2008 for MySQL++ by Doxygen

5.10 mysqlpp::Connection Class Reference 43

• connection.h
• connection.cpp

Generated on Fri Feb 29 16:26:00 2008 for MySQL++ by Doxygen

44 MySQL++ Class Documentation

5.11 mysqlpp::ConnectionFailed Class Reference

Exception (p.87) thrown when there is a problem related
to the database server connection.

#include <exceptions.h>

Inheritance diagram for mysqlpp::ConnectionFailed:

Collaboration diagram for mysqlpp::ConnectionFailed:

Public Member Functions

• ConnectionFailed (const char ∗w="", int e=0)
Create exception object.

• int errnum () const
Return the error number corresponding to the error message returned by what()
(p. 88), if any.

5.11.1 Detailed Description

Exception (p.87) thrown when there is a problem related
to the database server connection.

This is thrown not just on making the connection, but
also on shutdown and when calling certain of Connection’s
methods that require a connection when there isn’t one.

Generated on Fri Feb 29 16:26:00 2008 for MySQL++ by Doxygen

5.11 mysqlpp::ConnectionFailed Class Reference 45

5.11.2 Constructor & Destructor Documentation

5.11.2.1 mysqlpp::ConnectionFailed::ConnectionFailed (const char ∗ w = "",
int e = 0) [inline, explicit]

Create exception object.

Parameters:

w explanation for why the exception was thrown

e the error number from the underlying database API

5.11.3 Member Function Documentation

5.11.3.1 int mysqlpp::ConnectionFailed::errnum () const [inline]

Return the error number corresponding to the error
message returned by what() (p.88), if any.

If the error number is 0, it means that the error message
doesn’t come from the underlying database API, but
rather from MySQL++ itself. This happens when an error
condition is detected up at this higher level instead of
letting the underlying database API do it.

The documentation for this class was generated from the
following file:

• exceptions.h

Generated on Fri Feb 29 16:26:00 2008 for MySQL++ by Doxygen

46 MySQL++ Class Documentation

5.12 mysqlpp::ConnectionPool Class Reference

Manages a pool of connections for programs that need more
than one Connection (p.33) object at a time, but can’t
predict how many they need in advance.

#include <cpool.h>

Collaboration diagram for mysqlpp::ConnectionPool:

Public Member Functions

• ConnectionPool ()
Create empty pool.

• virtual ∼ConnectionPool ()
Destroy object.

• bool empty () const
Returns true if pool is empty.

• Connection ∗ grab ()
Grab a free connection from the pool.

• void release (const Connection ∗pc)
Return a connection to the pool.

• void shrink ()
Remove all unused connections from the pool.

Protected Member Functions

• void clear (bool all=true)
Drains the pool, freeing all allocated memory.

• virtual Connection ∗ create ()=0

Generated on Fri Feb 29 16:26:00 2008 for MySQL++ by Doxygen

5.12 mysqlpp::ConnectionPool Class Reference 47

Create a new connection.

• virtual void destroy (Connection ∗)=0

Destroy a connection.

• virtual unsigned int max_idle_time ()=0

Returns the maximum number of seconds a connection is able to remain idle before
it is dropped.

Classes

• struct ConnectionInfo

5.12.1 Detailed Description

Manages a pool of connections for programs that need more
than one Connection (p.33) object at a time, but can’t
predict how many they need in advance.

This class is useful in programs that need to make
multiple simultaneous queries on the database; this
requires multiple Connection (p.33) objects due to a hard
limitation of the underlying C API. Connection (p.33)
pools are most useful in multithreaded programs, but it
can be helpful to have one in a single-threaded program
as well. Sometimes it’s necessary to get more data from
the server while in the middle of processing data from
an earlier query; this requires multiple connections.
Whether you use a pool or manage connections yourself is
up to you, but realize that this class takes care of a
lot of subtle details for you that aren’t obvious.

The pool’s policy for connection reuse is to always
return the most recently used connection that’s not being
used right now. This ensures that excess connections
don’t hang around any longer than they must. If the pool
were to return the least recently used connection, it
would be likely to result in a large pool of sparsely
used connections because we’d keep resetting the
last-used time of whichever connection is least recently
used at that moment.

Generated on Fri Feb 29 16:26:00 2008 for MySQL++ by Doxygen

48 MySQL++ Class Documentation

5.12.2 Constructor & Destructor Documentation

5.12.2.1 virtual mysqlpp::ConnectionPool::∼ConnectionPool () [inline,
virtual]

Destroy object.

If the pool raises an assertion on destruction, it means
our subclass isn’t calling clear() (p.48) in its dtor as
it should.

5.12.3 Member Function Documentation

5.12.3.1 void mysqlpp::ConnectionPool::clear (bool all = true)
[protected]

Drains the pool, freeing all allocated memory.

A derived class must call this in its dtor to avoid
leaking all Connection (p.33) objects still in existence.
We can’t do it up at this level because this class’s dtor
can’t call our subclass’s destroy() (p.49) method.

Parameters:

all if true, remove all connections, even those in use

5.12.3.2 virtual Connection∗ mysqlpp::ConnectionPool::create ()
[protected, pure virtual]

Create a new connection.

Subclasses must override this.

Essentially, this method lets your code tell Connection-
Pool (p.46) what server to connect to, what login
parameters to use, what connection options to enable,
etc. ConnectionPool (p.46) can’t know any of this
without your help.

Return values:

A connected Connection (p.33) object

Generated on Fri Feb 29 16:26:00 2008 for MySQL++ by Doxygen

5.12 mysqlpp::ConnectionPool Class Reference 49

5.12.3.3 virtual void mysqlpp::ConnectionPool::destroy (Connection ∗)
[protected, pure virtual]

Destroy a connection.

Subclasses must override this.

This is for destroying the objects returned by create()
(p.48). Because we can’t know what the derived class did
to create the connection we can’t reliably know how to
destroy it.

5.12.3.4 Connection ∗ mysqlpp::ConnectionPool::grab ()

Grab a free connection from the pool.

This method creates a new connection if an unused one
doesn’t exist, and destroys any that have remained unused
for too long. If there is more than one free connection,
we return the most recently used one; this allows older
connections to die off over time when the caller’s need
for connections decreases.

Do not delete the returned pointer. This object manages
the lifetime of connection objects it creates.

Return values:

a pointer to the connection

5.12.3.5 virtual unsigned int mysqlpp::ConnectionPool::max_idle_time ()
[protected, pure virtual]

Returns the maximum number of seconds a connection is
able to remain idle before it is dropped.

Subclasses must override this as it encodes a policy
issue, something that MySQL++ can’t declare by fiat.

Return values:

number of seconds before an idle connection is
destroyed due to lack of use

5.12.3.6 void mysqlpp::ConnectionPool::release (const Connection ∗ pc)

Return a connection to the pool.

Generated on Fri Feb 29 16:26:00 2008 for MySQL++ by Doxygen

50 MySQL++ Class Documentation

Marks the connection as no longer in use.

The pool updates the last-used time of a connection only
on release, on the assumption that it was used just
prior. There’s nothing forcing you to do it this way:
your code is free to delay releasing idle connections
as long as it likes. You want to avoid this because it
will make the pool perform poorly; if it doesn’t know
approximately how long a connection has really been idle,
it can’t make good judgements about when to remove it
from the pool.

The documentation for this class was generated from the
following files:

• cpool.h
• cpool.cpp

Generated on Fri Feb 29 16:26:00 2008 for MySQL++ by Doxygen

5.13 mysqlpp::ConnectTimeoutOption Class Reference 51

5.13 mysqlpp::ConnectTimeoutOption Class Refer-
ence

Change Connection::connect() (p.38) default timeout.

#include <options.h>

Inheritance diagram for mysqlpp::ConnectTimeoutOption:

Collaboration diagram for mysqlpp::ConnectTimeoutOption:

5.13.1 Detailed Description

Change Connection::connect() (p.38) default timeout.

The documentation for this class was generated from the
following file:

• options.h

Generated on Fri Feb 29 16:26:00 2008 for MySQL++ by Doxygen

52 MySQL++ Class Documentation

5.14 mysqlpp::DataOption< T > Class Template Ref-
erence

Define abstract interface for all ∗Options that take a
lone scalar as an argument.

#include <options.h>

Inheritance diagram for mysqlpp::DataOption< T >:

Collaboration diagram for mysqlpp::DataOption< T >:

Generated on Fri Feb 29 16:26:00 2008 for MySQL++ by Doxygen

5.14 mysqlpp::DataOption< T > Class Template Reference 53

Public Types

• typedef T ArgType
Alias for template param.

Protected Member Functions

• DataOption (const T &arg)
Construct object.

Protected Attributes

• T arg_
The argument value.

5.14.1 Detailed Description

template<typename T> class mysqlpp::DataOption< T >

Define abstract interface for all ∗Options that take a
lone scalar as an argument.

The documentation for this class was generated from the
following file:

• options.h

Generated on Fri Feb 29 16:26:00 2008 for MySQL++ by Doxygen

54 MySQL++ Class Documentation

5.15 mysqlpp::Date Class Reference

C++ form of SQL’s DATE type.

#include <datetime.h>

Inheritance diagram for mysqlpp::Date:

Collaboration diagram for mysqlpp::Date:

Public Member Functions

• Date ()
Default constructor.

• Date (unsigned short y, unsigned char m, unsigned char d)
Initialize object.

• Date (const Date &other)
Initialize object as a copy of another Date (p. 54).

• Date (const DateTime &other)
Initialize object from date part of date/time object.

• Date (const char ∗str)
Initialize object from a C string containing a date.

• template<class Str> Date (const Str &str)
Initialize object from a C++ string containing a date.

• Date (time_t t)

Generated on Fri Feb 29 16:26:00 2008 for MySQL++ by Doxygen

5.15 mysqlpp::Date Class Reference 55

Initialize object from a time_t.

• int compare (const Date &other) const
Compare this date to another.

• const char ∗ convert (const char ∗)
Parse a SQL date string into this object.

• unsigned char day () const
Get the date’s day part, 1-31.

• void day (unsigned char d)
Change the date’s day part, 1-31.

• unsigned char month () const
Get the date’s month part, 1-12.

• void month (unsigned char m)
Change the date’s month part, 1-12.

• operator std::string () const
Convert to std::string.

• operator time_t () const
Convert to time_t.

• std::string str () const
Return our value in std::string form.

• unsigned short year () const
Get the date’s year part.

• void year (unsigned short y)
Change the date’s year part.

5.15.1 Detailed Description

C++ form of SQL’s DATE type.

Objects of this class can be inserted into streams, and
initialized from SQL DATE strings.

Generated on Fri Feb 29 16:26:00 2008 for MySQL++ by Doxygen

56 MySQL++ Class Documentation

5.15.2 Constructor & Destructor Documentation

5.15.2.1 mysqlpp::Date::Date (const char ∗ str) [inline, explicit]

Initialize object from a C string containing a date.

String (p.220) must be in the YYYY-MM-DD format. It
doesn’t have to be zero-padded.

5.15.2.2 template<class Str> mysqlpp::Date::Date (const Str & str)
[inline, explicit]

Initialize object from a C++ string containing a date.

This works with any stringish class that declares a c_-
str() member function: std::string, mysqlpp::String
(p.220)...

See also:

Date(const char∗) (p.56)

5.15.2.3 mysqlpp::Date::Date (time_t t) [explicit]

Initialize object from a time_t.

Naturally, we throw away the "time" part of the time_t.
If you need to keep it, you want to use DateTime (p.58)
instead.

5.15.3 Member Function Documentation

5.15.3.1 int mysqlpp::Date::compare (const Date & other) const

Compare this date to another.

Returns < 0 if this date is before the other, 0 of they
are equal, and > 0 if this date is after the other.

5.15.3.2 mysqlpp::Date::operator time_t () const

Convert to time_t.

The "time" part of the time_t is "now"

Generated on Fri Feb 29 16:26:00 2008 for MySQL++ by Doxygen

5.15 mysqlpp::Date Class Reference 57

5.15.3.3 void mysqlpp::Date::year (unsigned short y) [inline]

Change the date’s year part.

Pass the year value normally; we don’t optimize the value
by subtracting 1900 like some other date implementations.

5.15.3.4 unsigned short mysqlpp::Date::year () const [inline]

Get the date’s year part.

There’s no trickery here like in some date
implementations where you have to add 1900 or something
like that.

The documentation for this class was generated from the
following files:

• datetime.h
• datetime.cpp

Generated on Fri Feb 29 16:26:00 2008 for MySQL++ by Doxygen

58 MySQL++ Class Documentation

5.16 mysqlpp::DateTime Class Reference

C++ form of SQL’s DATETIME type.

#include <datetime.h>

Inheritance diagram for mysqlpp::DateTime:

Collaboration diagram for mysqlpp::DateTime:

Public Member Functions

• DateTime ()
Default constructor.

• DateTime (unsigned short y, unsigned char mon, unsigned char d, unsigned
char h, unsigned char min, unsigned char s)

Initialize object from discrete y/m/d h:m:s values.

• DateTime (const DateTime &other)
Initialize object as a copy of another Date (p. 54).

• DateTime (const char ∗str)
Initialize object from a C string containing a SQL date-and-time string.

• template<class Str> DateTime (const Str &str)
Initialize object from a C++ string containing a SQL date-and-time string.

• DateTime (time_t t)
Initialize object from a time_t.

• int compare (const DateTime &other) const

Generated on Fri Feb 29 16:26:00 2008 for MySQL++ by Doxygen

5.16 mysqlpp::DateTime Class Reference 59

Compare this object to another.

• const char ∗ convert (const char ∗)
Parse a SQL date and time string into this object.

• unsigned char day () const
Get the date/time value’s day part, 1-31.

• void day (unsigned char d)
Change the date/time value’s day part, 1-31.

• unsigned char hour () const
Get the date/time value’s hour part, 0-23.

• void hour (unsigned char h)
Change the date/time value’s hour part, 0-23.

• bool is_now () const
Returns true if object will evaluate to SQL "NOW()" on conversion to string.

• unsigned char minute () const
Get the date/time value’s minute part, 0-59.

• void minute (unsigned char m)
Change the date/time value’s minute part, 0-59.

• unsigned char month () const
Get the date/time value’s month part, 1-12.

• void month (unsigned char m)
Change the date/time value’s month part, 1-12.

• operator std::string () const
Convert to std::string.

• operator time_t () const
Convert to time_t.

• unsigned char second () const
Get the date/time value’s second part, 0-59.

• void second (unsigned char s)

Generated on Fri Feb 29 16:26:00 2008 for MySQL++ by Doxygen

60 MySQL++ Class Documentation

Change the date/time value’s second part, 0-59.

• std::string str () const
Return our value in std::string form.

• unsigned short year () const
Get the date/time value’s year part.

• void year (unsigned short y)
Change the date/time value’s year part.

Static Public Member Functions

• static DateTime now ()
Factory to create an object instance that will convert to SQL "NOW()" on insertion
into a query.

5.16.1 Detailed Description

C++ form of SQL’s DATETIME type.

This object exists primarily for conversion purposes.
You can initialize it in several different ways, and
then convert the object to SQL string form, extract the
individual y/m/d h:m:s values, convert it to C’s time_t,
etc.

5.16.2 Constructor & Destructor Documentation

5.16.2.1 mysqlpp::DateTime::DateTime (unsigned short y, unsigned char mon,
unsigned char d, unsigned char h, unsigned char min, unsigned char s)
[inline]

Initialize object from discrete y/m/d h:m:s values.

Parameters:

y year_

mon month_

d day_ of month_

h hour_

Generated on Fri Feb 29 16:26:00 2008 for MySQL++ by Doxygen

5.16 mysqlpp::DateTime Class Reference 61

min minute_

s second_

5.16.2.2 mysqlpp::DateTime::DateTime (const char ∗ str) [inline,
explicit]

Initialize object from a C string containing a SQL
date-and-time string.

String (p.220) must be in the HH:MM:SS format. It
doesn’t have to be zero-padded.

5.16.2.3 template<class Str> mysqlpp::DateTime::DateTime (const Str & str)
[inline, explicit]

Initialize object from a C++ string containing a SQL
date-and-time string.

This works with any stringish class that declares a c_-
str() member function: std::string, mysqlpp::String
(p.220)...

See also:

DateTime(const char∗) (p.61)

5.16.3 Member Function Documentation

5.16.3.1 int mysqlpp::DateTime::compare (const DateTime & other) const

Compare this object to another.

Returns < 0 if this object is before the other, 0 of they
are equal, and > 0 if this object is after the other.

5.16.3.2 static DateTime mysqlpp::DateTime::now () [inline, static]

Factory to create an object instance that will convert to
SQL "NOW()" on insertion into a query.

This is just syntactic sugar around the default ctor

Generated on Fri Feb 29 16:26:00 2008 for MySQL++ by Doxygen

62 MySQL++ Class Documentation

5.16.3.3 void mysqlpp::DateTime::year (unsigned short y) [inline]

Change the date/time value’s year part.

Pass the year value normally; we don’t optimize the
value by subtracting 1900 like some other date/time
implementations.

5.16.3.4 unsigned short mysqlpp::DateTime::year () const [inline]

Get the date/time value’s year part.

There’s no trickery here like in some date/time
implementations where you have to add 1900 or something
like that.

The documentation for this class was generated from the
following files:

• datetime.h
• datetime.cpp

Generated on Fri Feb 29 16:26:00 2008 for MySQL++ by Doxygen

5.17 mysqlpp::DBDriver Class Reference 63

5.17 mysqlpp::DBDriver Class Reference

Provides a thin abstraction layer over the underlying
database client library.

#include <dbdriver.h>

Public Types

• nr_more_results
success, with more results to come

• nr_last_result
success, last result recieved

• nr_error
problem retrieving next result

• enum nr_code { nr_more_results, nr_last_result, nr_error }
Result code returned by next_result() (p. 73).

Public Member Functions

• DBDriver ()
Create object.

• DBDriver (const DBDriver &other)
Duplicate an existing driver.

• virtual ∼DBDriver ()
Destroy object.

• ulonglong affected_rows ()
Return the number of rows affected by the last query.

• std::string client_version () const
Get database client library version.

• bool connect (const MYSQL &mysql)
Establish a new connection using the same parameters as an existing connection.

Generated on Fri Feb 29 16:26:00 2008 for MySQL++ by Doxygen

64 MySQL++ Class Documentation

• virtual bool connect (const char ∗host, const char ∗socket_name, unsigned
int port, const char ∗db, const char ∗user, const char ∗password)

Connect to database server.

• bool connected () const
Return true if we have an active connection to the database server.

• void copy (const DBDriver &other)
Establish a new connection as a copy of an existing one.

• bool create_db (const char ∗db) const
Ask the database server to create a database.

• void data_seek (MYSQL_RES ∗res, ulonglong offset) const
Seeks to a particualr row within the result set.

• void disconnect ()
Drop the connection to the database server.

• bool drop_db (const std::string &db) const
Drop a database.

• bool enable_ssl (const char ∗key=0, const char ∗cert=0, const char ∗ca=0,
const char ∗capath=0, const char ∗cipher=0)

Enable SSL-encrypted connection.

• const char ∗ error ()
Return error message for last MySQL error associated with this connection.

• int errnum ()
Return last MySQL error number associated with this connection.

• size_t escape_string (char ∗to, const char ∗from, size_t length)
SQL-escapes the given string, taking into account the.

• bool execute (const char ∗qstr, size_t length)
Executes the given query string.

• MYSQL_ROW fetch_row (MYSQL_RES ∗res) const
Returns the next raw C API row structure from the given result set.

• const unsigned long ∗ fetch_lengths (MYSQL_RES ∗res) const
Returns the lengths of the fields in the current row from a "use" query.

Generated on Fri Feb 29 16:26:00 2008 for MySQL++ by Doxygen

5.17 mysqlpp::DBDriver Class Reference 65

• MYSQL_FIELD ∗ fetch_field (MYSQL_RES ∗res, size_t i=UINT_MAX)
const

Returns information about a particular field in a result set.

• void field_seek (MYSQL_RES ∗res, size_t field) const
Jumps to the given field within the result set.

• void free_result (MYSQL_RES ∗res) const
Releases memory used by a result set.

• st_mysql_options get_options () const
Return the connection options object.

• std::string ipc_info ()
Get information about the IPC connection to the database server.

• ulonglong insert_id ()
Get ID generated for an AUTO_INCREMENT column in the previous INSERT
query.

• bool kill (unsigned long tid)
Kill a MySQL server thread.

• bool more_results ()
Returns true if there are unconsumed results from the most recent query.

• nr_code next_result ()
Moves to the next result set from a multi-query.

• int num_fields (MYSQL_RES ∗res) const
Returns the number of fields in the given result set.

• ulonglong num_rows (MYSQL_RES ∗res) const
Returns the number of rows in the given result set.

• bool ping ()
"Pings" the MySQL database

• int protocol_version ()
Returns version number of MySQL protocol this connection is using.

• std::string query_info ()

Generated on Fri Feb 29 16:26:00 2008 for MySQL++ by Doxygen

66 MySQL++ Class Documentation

Returns information about the last executed query.

• bool refresh (unsigned options)
Asks the database server to refresh certain internal data structures.

• bool result_empty ()
Returns true if the most recent result set was empty.

• bool select_db (const char ∗db)
Asks the database server to switch to a different database.

• std::string server_version ()
Get the database server’s version number.

• std::string set_option (Option ∗o)
Sets a connection option.

• bool set_option (mysql_option moption, const void ∗arg=0)
Set (p. 190) MySQL C API connection option.

• bool set_option (unsigned int option, bool arg)
Set (p. 190) MySQL C API connection option.

• std::string set_option_default (Option ∗o)
Same as set_option() (p. 76), except that it won’t override a previously-set option.

• bool shutdown ()
Ask database server to shut down.

• std::string server_status ()
Returns the database server’s status.

• MYSQL_RES ∗ store_result ()
Saves the results of the query just execute() (p. 71)d in memory and returns a pointer
to the MySQL C API data structure the results are stored in.

• bool thread_aware () const
Returns true if MySQL++ and the underlying MySQL C API library were both
compiled with thread awareness.

• void thread_end ()
Tells the underlying MySQL C API library that this thread is done using the library.

Generated on Fri Feb 29 16:26:00 2008 for MySQL++ by Doxygen

5.17 mysqlpp::DBDriver Class Reference 67

• unsigned long thread_id ()

Returns the MySQL server thread ID for this connection.

• bool thread_start ()

Tells the underlying C API library that the current thread will be using the library’s
services.

• MYSQL_RES ∗ use_result ()

Returns a result set from the last-executed query which we can walk through in
linear fashion, which doesn’t store all result sets in memory.

Static Public Member Functions

• static size_t escape_string_no_conn (char ∗to, const char ∗from,
size_t length)

SQL-escapes the given string without reference to the.

5.17.1 Detailed Description

Provides a thin abstraction layer over the underlying
database client library.

This class does as little as possible to adapt between
its public interface and the interface required by the
underlying C API. That is in fact its only mission. The
high-level interfaces indended for use by MySQL++ users
are in DBDriver (p.63), Query (p.130), Result, and ResUse,
all of which delegate the actual database communication
to an object of this type, created by DBDriver (p.63).
If you really need access to the low-level database
driver, get it via DBDriver::driver(); don’t create
DBDriver (p.63) objects directly.

Currently this is a concrete class for wrapping the MySQL
C API. In the future, it may be turned into an abstract
base class, with subclasses for different database server
types.

Generated on Fri Feb 29 16:26:00 2008 for MySQL++ by Doxygen

68 MySQL++ Class Documentation

5.17.2 Member Enumeration Documentation

5.17.2.1 enum mysqlpp::DBDriver::nr_code

Result code returned by next_result() (p.73).

Enumerator:

nr_more_results success, with more results to come

nr_last_result success, last result recieved

nr_error problem retrieving next result

5.17.3 Constructor & Destructor Documentation

5.17.3.1 mysqlpp::DBDriver::DBDriver (const DBDriver & other)

Duplicate an existing driver.

Parameters:

other existing DBDriver (p.63) object

This establishes a new database server connection with
the same parameters as the other driver’s.

5.17.4 Member Function Documentation

5.17.4.1 ulonglong mysqlpp::DBDriver::affected_rows () [inline]

Return the number of rows affected by the last query.

Wraps mysql_affected_rows() in the MySQL C API.

5.17.4.2 std::string mysqlpp::DBDriver::client_version () const [inline]

Get database client library version.

Wraps mysql_get_client_info() in the MySQL C API.

5.17.4.3 bool mysqlpp::DBDriver::connect (const char ∗ host, const char ∗
socket_name, unsigned int port, const char ∗ db, const char ∗ user, const
char ∗ password) [virtual]

Connect to database server.

Generated on Fri Feb 29 16:26:00 2008 for MySQL++ by Doxygen

5.17 mysqlpp::DBDriver Class Reference 69

If you call this method on an object that is already
connected to a database server, the previous connection
is dropped and a new connection is established.

5.17.4.4 bool mysqlpp::DBDriver::connect (const MYSQL & mysql)

Establish a new connection using the same parameters as
an existing connection.

Parameters:

mysql existing MySQL C API connection object

5.17.4.5 bool mysqlpp::DBDriver::connected () const [inline]

Return true if we have an active connection to the
database server.

This does not actually check whether the connection is
viable, it just indicates whether there was previously
a successful connect() (p.69) call and no disconnect()
(p.70). Call ping() (p.74) to actually test the
connection’s viability.

5.17.4.6 void mysqlpp::DBDriver::copy (const DBDriver & other)

Establish a new connection as a copy of an existing one.

Parameters:

other the connection to copy

5.17.4.7 bool mysqlpp::DBDriver::create_db (const char ∗ db) const

Ask the database server to create a database.

Parameters:

db name of database to create

Returns:

true if database was created successfully

Generated on Fri Feb 29 16:26:00 2008 for MySQL++ by Doxygen

70 MySQL++ Class Documentation

5.17.4.8 void mysqlpp::DBDriver::data_seek (MYSQL_RES ∗ res, ulonglong
offset) const [inline]

Seeks to a particualr row within the result set.

Wraps mysql_data_seek() in MySQL C API.

5.17.4.9 void mysqlpp::DBDriver::disconnect ()

Drop the connection to the database server.

This method is protected because it should only be
used within the library. Unless you use the default
constructor, this object should always be connected.

5.17.4.10 bool mysqlpp::DBDriver::drop_db (const std::string & db) const

Drop a database.

Parameters:

db name of database to destroy

Returns:

true if database was created successfully

5.17.4.11 bool mysqlpp::DBDriver::enable_ssl (const char ∗ key = 0, const char
∗ cert = 0, const char ∗ ca = 0, const char ∗ capath = 0, const char ∗
cipher = 0)

Enable SSL-encrypted connection.

Returns:

False if call fails or the C API library wasn’t
compiled with SSL support enabled.

Must be called before connection is established.

Wraps mysql_ssl_set() in MySQL C API.

5.17.4.12 int mysqlpp::DBDriver::errnum () [inline]

Return last MySQL error number associated with this
connection.

Wraps mysql_errno() in the MySQL C API.

Generated on Fri Feb 29 16:26:00 2008 for MySQL++ by Doxygen

5.17 mysqlpp::DBDriver Class Reference 71

5.17.4.13 const char∗ mysqlpp::DBDriver::error () [inline]

Return error message for last MySQL error associated with
this connection.

Can return a MySQL++ DBDriver-specific error message if
there is one. If not, it simply wraps mysql_error() in
the MySQL C API.

5.17.4.14 size_t mysqlpp::DBDriver::escape_string (char ∗ to, const char ∗
from, size_t length) [inline]

SQL-escapes the given string, taking into account the.

Wraps mysql_real_escape_string() in the MySQL C API.

5.17.4.15 static size_t mysqlpp::DBDriver::escape_string_no_conn (char ∗ to,
const char ∗ from, size_t length) [inline, static]

SQL-escapes the given string without reference to the.

Wraps mysql_escape_string() in the MySQL C API.

5.17.4.16 bool mysqlpp::DBDriver::execute (const char ∗ qstr, size_t length)
[inline]

Executes the given query string.

Wraps mysql_real_query() in the MySQL C API.

5.17.4.17 MYSQL_FIELD∗ mysqlpp::DBDriver::fetch_field (MYSQL_RES ∗
res, size_t i = UINT_MAX) const [inline]

Returns information about a particular field in a result
set.

Parameters:

res result set to fetch field information for

i field number to fetch information for, if given

If i parameter is given, this call is like a combination
of field_seek() (p.72) followed by fetch_field() (p.71)
without the i parameter, which otherwise just iterates
through the set of fields in the given result set.

Generated on Fri Feb 29 16:26:00 2008 for MySQL++ by Doxygen

72 MySQL++ Class Documentation

Wraps mysql_fetch_field() and mysql_fetch_field_-
direct() in MySQL C API. (Which one it uses depends on
i parameter.)

5.17.4.18 const unsigned long∗ mysqlpp::DBDriver::fetch_lengths
(MYSQL_RES ∗ res) const [inline]

Returns the lengths of the fields in the current row from
a "use" query.

Wraps mysql_fetch_lengths() in MySQL C API.

5.17.4.19 MYSQL_ROW mysqlpp::DBDriver::fetch_row (MYSQL_RES ∗ res)
const [inline]

Returns the next raw C API row structure from the given
result set.

This is for "use" query result sets only. "store"
queries have all the rows already.

Wraps mysql_fetch_row() in MySQL C API.

5.17.4.20 void mysqlpp::DBDriver::field_seek (MYSQL_RES ∗ res, size_t field)
const [inline]

Jumps to the given field within the result set.

Wraps mysql_field_seek() in MySQL C API.

5.17.4.21 void mysqlpp::DBDriver::free_result (MYSQL_RES ∗ res) const
[inline]

Releases memory used by a result set.

Wraps mysql_free_result() in MySQL C API.

5.17.4.22 ulonglong mysqlpp::DBDriver::insert_id () [inline]

Get ID generated for an AUTO_INCREMENT column in the
previous INSERT query.

Return values:

0 if the previous query did not generate an ID. Use
the SQL function LAST_INSERT_ID() if you need

Generated on Fri Feb 29 16:26:00 2008 for MySQL++ by Doxygen

5.17 mysqlpp::DBDriver Class Reference 73

the last ID generated by any query, not just the
previous one.

5.17.4.23 std::string mysqlpp::DBDriver::ipc_info () [inline]

Get information about the IPC connection to the database
server.

String (p.220) contains info about type of connection
(e.g. TCP/IP, named pipe, Unix socket...) and the
server hostname.

Wraps mysql_get_host_info() in the MySQL C API.

5.17.4.24 bool mysqlpp::DBDriver::kill (unsigned long tid) [inline]

Kill a MySQL server thread.

See also:

thread_id() (p.77)

5.17.4.25 bool mysqlpp::DBDriver::more_results () [inline]

Returns true if there are unconsumed results from the
most recent query.

Wraps mysql_more_results() in the MySQL C API.

5.17.4.26 nr_code mysqlpp::DBDriver::next_result () [inline]

Moves to the next result set from a multi-query.

Returns:

A code indicating whether we successfully found
another result, there were no more results (but still
success) or encountered an error trying to find the
next result set.

Wraps mysql_next_result() in the MySQL C API, with
translation of its return value from magic integers to
nr_code enum values.

Generated on Fri Feb 29 16:26:00 2008 for MySQL++ by Doxygen

74 MySQL++ Class Documentation

5.17.4.27 int mysqlpp::DBDriver::num_fields (MYSQL_RES ∗ res) const
[inline]

Returns the number of fields in the given result set.

Wraps mysql_num_fields() in MySQL C API.

5.17.4.28 ulonglong mysqlpp::DBDriver::num_rows (MYSQL_RES ∗ res)
const [inline]

Returns the number of rows in the given result set.

Wraps mysql_num_rows() in MySQL C API.

5.17.4.29 bool mysqlpp::DBDriver::ping () [inline]

"Pings" the MySQL database

This function will try to reconnect to the server if the
connection has been dropped. Wraps mysql_ping() in the
MySQL C API.

Return values:

true if server is responding, regardless of whether we
had to reconnect or not

false if either we already know the connection is down
and cannot re-establish it, or if the server
did not respond to the ping and we could not
re-establish the connection.

5.17.4.30 int mysqlpp::DBDriver::protocol_version () [inline]

Returns version number of MySQL protocol this connection
is using.

Wraps mysql_get_proto_info() in the MySQL C API.

5.17.4.31 string mysqlpp::DBDriver::query_info ()

Returns information about the last executed query.

Wraps mysql_info() in the MySQL C API

Generated on Fri Feb 29 16:26:00 2008 for MySQL++ by Doxygen

5.17 mysqlpp::DBDriver Class Reference 75

5.17.4.32 bool mysqlpp::DBDriver::refresh (unsigned options) [inline]

Asks the database server to refresh certain internal data
structures.

Wraps mysql_refresh() in the MySQL C API. There is no
corresponding interface for this in higher level MySQL++
classes because it was undocumented until recently, and
it’s a pretty low-level thing. It’s designed for things
like MySQL Administrator.

5.17.4.33 bool mysqlpp::DBDriver::result_empty () [inline]

Returns true if the most recent result set was empty.

Wraps mysql_field_count() in the MySQL C API, returning
true if it returns 0.

5.17.4.34 std::string mysqlpp::DBDriver::server_status () [inline]

Returns the database server’s status.

String (p.220) is similar to that returned by the
mysqladmin status command. Among other things, it
contains uptime in seconds, and the number of running
threads, questions and open tables.

Wraps mysql_stat() in the MySQL C API.

5.17.4.35 std::string mysqlpp::DBDriver::server_version () [inline]

Get the database server’s version number.

Wraps mysql_get_server_info() in the MySQL C API.

5.17.4.36 bool mysqlpp::DBDriver::set_option (unsigned int option, bool arg)

Set (p.190) MySQL C API connection option.

Manipulates the MYSQL.client_flag bit mask. This allows
these flags to be treated the same way as any other
connection option, even though the C API handles them
differently.

Generated on Fri Feb 29 16:26:00 2008 for MySQL++ by Doxygen

76 MySQL++ Class Documentation

5.17.4.37 std::string mysqlpp::DBDriver::set_option (Option ∗ o)

Sets a connection option.

This is the database-independent high-level option
setting interface that Connection::set_option() (p.41)
calls. There are several private overloads that actually
implement the option setting.

See also:

Connection::set_option(Option∗) (p.41) for commentary

5.17.4.38 bool mysqlpp::DBDriver::shutdown ()

Ask database server to shut down.

User must have the "shutdown" privilege.

Wraps mysql_shutdown() in the MySQL C API.

5.17.4.39 MYSQL_RES∗ mysqlpp::DBDriver::store_result () [inline]

Saves the results of the query just execute() (p.71)d
in memory and returns a pointer to the MySQL C API data
structure the results are stored in.

See also:

use_result() (p.77)

Wraps mysql_store_result() in the MySQL C API.

5.17.4.40 bool mysqlpp::DBDriver::thread_aware () const

Returns true if MySQL++ and the underlying MySQL C API
library were both compiled with thread awareness.

This is based in part on a MySQL C API function mysql_-
thread_safe(). We deliberately don’t call this wrapper
thread_safe() because it’s a misleading name: linking to
thread-aware versions of the MySQL++ and C API libraries
doesn’t automatically make your program "thread-safe".
See the chapter on threads in the user manual for more
information and guidance.

Generated on Fri Feb 29 16:26:00 2008 for MySQL++ by Doxygen

5.17 mysqlpp::DBDriver Class Reference 77

5.17.4.41 void mysqlpp::DBDriver::thread_end () [inline]

Tells the underlying MySQL C API library that this thread
is done using the library.

This exists because the MySQL C API library allocates
some per-thread memory which it doesn’t release until you
call this.

5.17.4.42 unsigned long mysqlpp::DBDriver::thread_id () [inline]

Returns the MySQL server thread ID for this connection.

This has nothing to do with threading on the client side.
It’s a server-side thread ID, to be used with kill()
(p.73).

5.17.4.43 bool mysqlpp::DBDriver::thread_start () [inline]

Tells the underlying C API library that the current
thread will be using the library’s services.

Return values:

True if there was no problem

The MySQL++ user manual’s chapter on threads details two
major strategies for dealing with connections in the face
of threads. If you take the simpler path, creating one
DBDriver (p.63) object per thread, it is never necessary
to call this function; the underlying C API will call
it for you when you establish the first database server
connection from that thread. If you use a more complex
connection management strategy where it’s possible for
one thread to establish a connection that another thread
uses, you must call this from each thread that can use
the database before it creates any MySQL++ objects. If
you use a DBDriverPool object, this applies; DBDriverPool
isn’t smart enough to call this for you, and the MySQL C
API won’t do it, either.

5.17.4.44 MYSQL_RES∗ mysqlpp::DBDriver::use_result () [inline]

Returns a result set from the last-executed query which
we can walk through in linear fashion, which doesn’t
store all result sets in memory.

Generated on Fri Feb 29 16:26:00 2008 for MySQL++ by Doxygen

78 MySQL++ Class Documentation

See also:

store_result (p.76)

Wraps mysql_use_result() in the MySQL C API.

The documentation for this class was generated from the
following files:

• dbdriver.h
• dbdriver.cpp

Generated on Fri Feb 29 16:26:00 2008 for MySQL++ by Doxygen

5.18 mysqlpp::DBSelectionFailed Class Reference 79

5.18 mysqlpp::DBSelectionFailed Class Reference

Exception (p.87) thrown when the program tries to select
a new database and the database server refuses for some
reason.

#include <exceptions.h>

Inheritance diagram for mysqlpp::DBSelectionFailed:

Collaboration diagram for mysqlpp::DBSelectionFailed:

Public Member Functions

• DBSelectionFailed (const char ∗w="", int e=0)
Create exception object.

• int errnum () const
Return the error number corresponding to the error message returned by what()
(p. 88), if any.

5.18.1 Detailed Description

Exception (p.87) thrown when the program tries to select
a new database and the database server refuses for some
reason.

Generated on Fri Feb 29 16:26:00 2008 for MySQL++ by Doxygen

80 MySQL++ Class Documentation

5.18.2 Constructor & Destructor Documentation

5.18.2.1 mysqlpp::DBSelectionFailed::DBSelectionFailed (const char ∗ w = "",
int e = 0) [inline, explicit]

Create exception object.

Parameters:

w explanation for why the exception was thrown

e the error number from the underlying database API

5.18.3 Member Function Documentation

5.18.3.1 int mysqlpp::DBSelectionFailed::errnum () const [inline]

Return the error number corresponding to the error
message returned by what() (p.88), if any.

If the error number is 0, it means that the error message
doesn’t come from the underlying database API, but
rather from MySQL++ itself. This happens when an error
condition is detected up at this higher level instead of
letting the underlying database API do it.

The documentation for this class was generated from the
following file:

• exceptions.h

Generated on Fri Feb 29 16:26:00 2008 for MySQL++ by Doxygen

5.19 mysqlpp::equal_list_b< Seq1, Seq2, Manip > Struct Template Reference 81

5.19 mysqlpp::equal_list_b< Seq1, Seq2, Manip >
Struct Template Reference

Same as equal_list_ba (p.84), plus the option to have
some elements of the equals clause suppressed.

#include <vallist.h>

Collaboration diagram for mysqlpp::equal_list_b< Seq1,
Seq2, Manip >:

Public Member Functions

• equal_list_b (const Seq1 &s1, const Seq2 &s2, const std::vector< bool > &f,
const char ∗d, const char ∗e, Manip m)

Create object.

Public Attributes

• const Seq1 ∗ list1
the list of objects on the left-hand side of the equals sign

• const Seq2 ∗ list2
the list of objects on the right-hand side of the equals sign

• const std::vector< bool > fields
for each true item in the list, the pair in that position will be inserted into a C++
stream

• const char ∗ delim
delimiter to use between each pair of elements

• const char ∗ equl
"equal" sign to use between each item in each equal pair; doesn’t have to actually
be " = "

Generated on Fri Feb 29 16:26:00 2008 for MySQL++ by Doxygen

82 MySQL++ Class Documentation

• Manip manip
manipulator to use when inserting the equal_list into a C++ stream

5.19.1 Detailed Description

template<class Seq1, class Seq2, class Manip> struct mysqlpp::equal_list_b<
Seq1, Seq2, Manip >

Same as equal_list_ba (p.84), plus the option to have
some elements of the equals clause suppressed.

Imagine an object of this type contains the lists (a, b,
c) (d, e, f), that the object’s ’fields’ list is (true,
false, true), and that the object’s delimiter and equals
symbols are set to " AND " and " = " respectively. When
you insert that object into a C++ stream, you would get
"a = d AND c = f".

See equal_list_ba’s documentation for more details.

5.19.2 Constructor & Destructor Documentation

5.19.2.1 template<class Seq1, class Seq2, class Manip>
mysqlpp::equal_list_b< Seq1, Seq2, Manip >::equal_list_b (const
Seq1 & s1, const Seq2 & s2, const std::vector< bool > & f, const char ∗
d, const char ∗ e, Manip m) [inline]

Create object.

Parameters:

s1 list of objects on left-hand side of equal sign

s2 list of objects on right-hand side of equal sign

f for each true item in the list, the pair of items in
that position will be inserted into a C++ stream

d what delimiter to use between each group in the
list when inserting the list into a C++ stream

e the "equals" sign between each pair of items in the
equal list; doesn’t actually have to be " = "!

m manipulator to use when inserting the list into a
C++ stream

The documentation for this struct was generated from the
following file:

Generated on Fri Feb 29 16:26:00 2008 for MySQL++ by Doxygen

5.19 mysqlpp::equal_list_b< Seq1, Seq2, Manip > Struct Template Reference 83

• vallist.h

Generated on Fri Feb 29 16:26:00 2008 for MySQL++ by Doxygen

84 MySQL++ Class Documentation

5.20 mysqlpp::equal_list_ba< Seq1, Seq2, Manip >
Struct Template Reference

Holds two lists of items, typically used to construct a
SQL "equals clause".

#include <vallist.h>

Collaboration diagram for mysqlpp::equal_list_ba< Seq1,
Seq2, Manip >:

Public Member Functions

• equal_list_ba (const Seq1 &s1, const Seq2 &s2, const char ∗d, const char ∗e,
Manip m)

Create object.

Public Attributes

• const Seq1 ∗ list1
the list of objects on the left-hand side of the equals sign

• const Seq2 ∗ list2
the list of objects on the right-hand side of the equals sign

• const char ∗ delim
delimiter to use between each pair of elements

• const char ∗ equl
"equal" sign to use between each item in each equal pair; doesn’t have to actually
be " = "

• Manip manip
manipulator to use when inserting the equal_list into a C++ stream

Generated on Fri Feb 29 16:26:00 2008 for MySQL++ by Doxygen

5.20 mysqlpp::equal_list_ba< Seq1, Seq2, Manip > Struct Template Reference85

5.20.1 Detailed Description

template<class Seq1, class Seq2, class Manip> struct mysqlpp::equal_list_ba<
Seq1, Seq2, Manip >

Holds two lists of items, typically used to construct a
SQL "equals clause".

The WHERE clause in a SQL SELECT statment is an example
of an equals clause.

Imagine an object of this type contains the lists (a,
b) (c, d), and that the object’s delimiter and equals
symbols are set to ", " and " = " respectively. When you
insert that object into a C++ stream, you would get "a =
c, b = d".

This class is never instantiated by hand. The equal_-
list() functions build instances of this structure
template to do their work. MySQL++’s SSQLS mechanism
calls those functions when building SQL queries; you can
call them yourself to do similar work. The "Harnessing
SSQLS Internals" section of the user manual has some
examples of this.

See also:

equal_list_b (p.81)

5.20.2 Constructor & Destructor Documentation

5.20.2.1 template<class Seq1, class Seq2, class Manip>
mysqlpp::equal_list_ba< Seq1, Seq2, Manip >::equal_list_ba (const
Seq1 & s1, const Seq2 & s2, const char ∗ d, const char ∗ e, Manip m)
[inline]

Create object.

Parameters:

s1 list of objects on left-hand side of equal sign

s2 list of objects on right-hand side of equal sign

d what delimiter to use between each group in the
list when inserting the list into a C++ stream

e the "equals" sign between each pair of items in the
equal list; doesn’t actually have to be " = "!

Generated on Fri Feb 29 16:26:00 2008 for MySQL++ by Doxygen

86 MySQL++ Class Documentation

m manipulator to use when inserting the list into a
C++ stream

The documentation for this struct was generated from the
following file:

• vallist.h

Generated on Fri Feb 29 16:26:00 2008 for MySQL++ by Doxygen

5.21 mysqlpp::Exception Class Reference 87

5.21 mysqlpp::Exception Class Reference

Base class for all MySQL++ custom exceptions.

#include <exceptions.h>

Inheritance diagram for mysqlpp::Exception:

Collaboration diagram for mysqlpp::Exception:

Public Member Functions

• Exception (const Exception &e) throw ()
Create exception object as copy of another.

• Exception & operator= (const Exception &rhs) throw ()

Generated on Fri Feb 29 16:26:00 2008 for MySQL++ by Doxygen

88 MySQL++ Class Documentation

Assign another exception object’s contents to this one.

• ∼Exception () throw ()
Destroy exception object.

• virtual const char ∗ what () const throw ()
Returns explanation of why exception was thrown.

Protected Member Functions

• Exception (const char ∗w="") throw ()
Create exception object.

• Exception (const std::string &w) throw ()
Create exception object.

Protected Attributes

• std::string what_
explanation of why exception was thrown

5.21.1 Detailed Description

Base class for all MySQL++ custom exceptions.

The documentation for this class was generated from the
following file:

• exceptions.h

Generated on Fri Feb 29 16:26:00 2008 for MySQL++ by Doxygen

5.22 mysqlpp::Field Class Reference 89

5.22 mysqlpp::Field Class Reference

Class to hold information about a SQL field.

#include <field.h>

Collaboration diagram for mysqlpp::Field:

Public Member Functions

• Field ()
Create empty object.

• Field (const MYSQL_FIELD ∗pf)
Create object from C API field structure.

• Field (const Field &other)
Create object as a copy of another Field (p. 89).

• bool auto_increment () const
Returns true if field auto-increments.

• bool binary_type () const
Returns true if field is of some binary type.

• bool blob_type () const
Returns true if field is of some BLOB type.

• const char ∗ db () const
Return the name of the database the field comes from.

• bool enumeration () const
Returns true if field is of an enumerated value type.

• size_t length () const
Return the creation size of the field.

Generated on Fri Feb 29 16:26:00 2008 for MySQL++ by Doxygen

90 MySQL++ Class Documentation

• size_t max_length () const
Return the maximum number of bytes stored in this field in any of the rows in the
result set we were created from.

• bool multiple_key () const
Returns true if field is part of a key.

• const char ∗ name () const
Return the field’s name.

• bool primary_key () const
Returns true if field is part of a primary key.

• bool set_type () const
Returns true if field is of some ’set’ type.

• const char ∗ table () const
Return the name of the table the field comes from.

• bool timestamp () const
Returns true if field’s type is timestamp.

• const mysql_type_info & type () const
Return information about the field’s type.

• bool unique_key () const
Returns true if field is part of a unique key.

• bool zerofill () const
Returns true if field has the zerofill attribute.

5.22.1 Detailed Description

Class to hold information about a SQL field.

This is a cut-down version of MYSQL_FIELD, using MySQL++
and generic C++ types instead of the C types it uses, and
hiding all fields behind accessors. It leaves out data
members we have decided aren’t very useful. Given a good
argument, we’re willing to mirror more of the fields;
we just don’t want to mirror the underlying structure
slavishly for no benefit.

Generated on Fri Feb 29 16:26:00 2008 for MySQL++ by Doxygen

5.22 mysqlpp::Field Class Reference 91

5.22.2 Member Function Documentation

5.22.2.1 size_t mysqlpp::Field::length () const [inline]

Return the creation size of the field.

This is the number of bytes the field can hold, not how
much is actually stored in the field on any particular
row.

The documentation for this class was generated from the
following file:

• field.h

Generated on Fri Feb 29 16:26:00 2008 for MySQL++ by Doxygen

92 MySQL++ Class Documentation

5.23 mysqlpp::FieldNames Class Reference

Holds a list of SQL field names.

#include <field_names.h>

Public Member Functions

• FieldNames ()
Default constructor.

• FieldNames (const FieldNames &other)
Copy constructor.

• FieldNames (const ResultBase ∗res)
Create field name list from a result set.

• FieldNames (int i)
Create empty field name list, reserving space for a fixed number of field names.

• FieldNames & operator= (const ResultBase ∗res)
Initializes the field list from a result set.

• FieldNames & operator= (int i)
Insert i empty field names at beginning of list.

• std::string & operator[] (int i)
Get the name of a field given its index.

• const std::string & operator[] (int i) const
Get the name of a field given its index, in const context.

• unsigned int operator[] (const std::string &s) const
Get the index number of a field given its name.

5.23.1 Detailed Description

Holds a list of SQL field names.

The documentation for this class was generated from the
following files:

Generated on Fri Feb 29 16:26:00 2008 for MySQL++ by Doxygen

5.23 mysqlpp::FieldNames Class Reference 93

• field_names.h
• field_names.cpp

Generated on Fri Feb 29 16:26:00 2008 for MySQL++ by Doxygen

94 MySQL++ Class Documentation

5.24 mysqlpp::FieldTypes Class Reference

A vector of SQL field types.

#include <field_types.h>

Public Member Functions

• FieldTypes ()
Default constructor.

• FieldTypes (const ResultBase ∗res)
Create list of field types from a result set.

• FieldTypes (int i)
Create fixed-size list of uninitialized field types.

• FieldTypes & operator= (const ResultBase ∗res)
Initialize field list based on a result set.

• FieldTypes & operator= (int i)
Insert a given number of uninitialized field type objects at the beginning of the list.

5.24.1 Detailed Description

A vector of SQL field types.

5.24.2 Member Function Documentation

5.24.2.1 FieldTypes& mysqlpp::FieldTypes::operator= (int i) [inline]

Insert a given number of uninitialized field type objects
at the beginning of the list.

Parameters:

i number of field type objects to insert

The documentation for this class was generated from the
following files:

• field_types.h
• field_types.cpp

Generated on Fri Feb 29 16:26:00 2008 for MySQL++ by Doxygen

5.25 mysqlpp::FoundRowsOption Class Reference 95

5.25 mysqlpp::FoundRowsOption Class Reference

Make Query::affected_rows() (p.130) return number of
matched rows.

#include <options.h>

Inheritance diagram for mysqlpp::FoundRowsOption:

Collaboration diagram for mysqlpp::FoundRowsOption:

5.25.1 Detailed Description

Make Query::affected_rows() (p.130) return number of
matched rows.

Default is to return number of changed rows.

The documentation for this class was generated from the
following file:

• options.h

Generated on Fri Feb 29 16:26:00 2008 for MySQL++ by Doxygen

96 MySQL++ Class Documentation

5.26 mysqlpp::GuessConnectionOption Class Refer-
ence

Allow C API to guess what kind of connection to use.

#include <options.h>

Inheritance diagram for mysqlpp::GuessConnectionOption:

Collaboration diagram for mysqlpp::GuessConnectionOption:

5.26.1 Detailed Description

Allow C API to guess what kind of connection to use.

This is the default. The option exists to override
UseEmbeddedConnectionOption (p.252) and UseEmbedded-
ConnectionOption (p.252).

The documentation for this class was generated from the
following file:

• options.h

Generated on Fri Feb 29 16:26:00 2008 for MySQL++ by Doxygen

5.27 mysqlpp::IgnoreSpaceOption Class Reference 97

5.27 mysqlpp::IgnoreSpaceOption Class Reference

Allow spaces after function names in queries.

#include <options.h>

Inheritance diagram for mysqlpp::IgnoreSpaceOption:

Collaboration diagram for mysqlpp::IgnoreSpaceOption:

5.27.1 Detailed Description

Allow spaces after function names in queries.

The documentation for this class was generated from the
following file:

• options.h

Generated on Fri Feb 29 16:26:00 2008 for MySQL++ by Doxygen

98 MySQL++ Class Documentation

5.28 mysqlpp::InitCommandOption Class Reference

Give SQL executed on connect.

#include <options.h>

Inheritance diagram for mysqlpp::InitCommandOption:

Collaboration diagram for mysqlpp::InitCommandOption:

5.28.1 Detailed Description

Give SQL executed on connect.

The documentation for this class was generated from the
following file:

• options.h

Generated on Fri Feb 29 16:26:00 2008 for MySQL++ by Doxygen

5.29 mysqlpp::InteractiveOption Class Reference 99

5.29 mysqlpp::InteractiveOption Class Reference

Assert that this is an interactive program.

#include <options.h>

Inheritance diagram for mysqlpp::InteractiveOption:

Collaboration diagram for mysqlpp::InteractiveOption:

5.29.1 Detailed Description

Assert that this is an interactive program.

Affects connection timeouts.

The documentation for this class was generated from the
following file:

• options.h

Generated on Fri Feb 29 16:26:00 2008 for MySQL++ by Doxygen

100 MySQL++ Class Documentation

5.30 mysqlpp::LocalFilesOption Class Reference

Enable LOAD DATA LOCAL statement.

#include <options.h>

Inheritance diagram for mysqlpp::LocalFilesOption:

Collaboration diagram for mysqlpp::LocalFilesOption:

5.30.1 Detailed Description

Enable LOAD DATA LOCAL statement.

The documentation for this class was generated from the
following file:

• options.h

Generated on Fri Feb 29 16:26:00 2008 for MySQL++ by Doxygen

5.31 mysqlpp::LocalInfileOption Class Reference 101

5.31 mysqlpp::LocalInfileOption Class Reference

Enable LOAD LOCAL INFILE statement.

#include <options.h>

Inheritance diagram for mysqlpp::LocalInfileOption:

Collaboration diagram for mysqlpp::LocalInfileOption:

5.31.1 Detailed Description

Enable LOAD LOCAL INFILE statement.

The documentation for this class was generated from the
following file:

• options.h

Generated on Fri Feb 29 16:26:00 2008 for MySQL++ by Doxygen

102 MySQL++ Class Documentation

5.32 mysqlpp::MultiResultsOption Class Reference

Enable multiple result sets in a reply.

#include <options.h>

Inheritance diagram for mysqlpp::MultiResultsOption:

Collaboration diagram for mysqlpp::MultiResultsOption:

5.32.1 Detailed Description

Enable multiple result sets in a reply.

The documentation for this class was generated from the
following file:

• options.h

Generated on Fri Feb 29 16:26:00 2008 for MySQL++ by Doxygen

5.33 mysqlpp::MultiStatementsOption Class Reference 103

5.33 mysqlpp::MultiStatementsOption Class Refer-
ence

Enable multiple queries in a request to the server.

#include <options.h>

Inheritance diagram for mysqlpp::MultiStatementsOption:

Collaboration diagram for mysqlpp::MultiStatementsOption:

5.33.1 Detailed Description

Enable multiple queries in a request to the server.

The documentation for this class was generated from the
following file:

• options.h

Generated on Fri Feb 29 16:26:00 2008 for MySQL++ by Doxygen

104 MySQL++ Class Documentation

5.34 mysqlpp::MutexFailed Class Reference

Exception (p.87) thrown when a BeecryptMutex (p.27) object
fails.

#include <exceptions.h>

Inheritance diagram for mysqlpp::MutexFailed:

Collaboration diagram for mysqlpp::MutexFailed:

Public Member Functions

• MutexFailed (const char ∗w="lock failed")
Create exception object.

5.34.1 Detailed Description

Exception (p.87) thrown when a BeecryptMutex (p.27) object
fails.

The documentation for this class was generated from the
following file:

• exceptions.h

Generated on Fri Feb 29 16:26:00 2008 for MySQL++ by Doxygen

5.35 mysqlpp::mysql_type_info Class Reference 105

5.35 mysqlpp::mysql_type_info Class Reference

SQL field type information.

#include <type_info.h>

Public Member Functions

• mysql_type_info ()
Default constructor.

• mysql_type_info (enum_field_types t, bool _unsigned=false, bool _-
null=false)

Create object from MySQL C API type info.

• mysql_type_info (const mysql_type_info &t)
Create object as a copy of another.

• mysql_type_info (const std::type_info &t)
Create object from a C++ type_info object.

• mysql_type_info & operator= (const mysql_type_info &t)
Assign another mysql_type_info (p. 105) object to this object.

• mysql_type_info & operator= (const std::type_info &t)
Assign a C++ type_info object to this object.

• const char ∗ name () const
Returns an implementation-defined name of the C++ type.

• const char ∗ sql_name () const
Returns the name of the SQL type.

• const std::type_info & c_type () const
Returns the type_info for the C++ type associated with the SQL type.

• const mysql_type_info base_type () const
Returns the type_info for the C++ type inside of the mysqlpp::Null (p. 114) type.

• int id () const
Returns the ID of the SQL type.

• bool quote_q () const

Generated on Fri Feb 29 16:26:00 2008 for MySQL++ by Doxygen

106 MySQL++ Class Documentation

Returns true if the SQL type is of a type that needs to be quoted.

• bool escape_q () const
Returns true if the SQL type is of a type that needs to be escaped.

• bool before (mysql_type_info &b)
Provides a way to compare two types for sorting.

Static Public Attributes

• static const enum_field_types string_type = MYSQL_TYPE_-
STRING

The internal constant we use for our string type.

5.35.1 Detailed Description

SQL field type information.

5.35.2 Constructor & Destructor Documentation

5.35.2.1 mysqlpp::mysql_type_info::mysql_type_info () [inline]

Default constructor.

This only exists because FieldTypes (p.94) keeps a vector
of these objects. You are expected to copy real values
into it before using it via the copy ctor or one of the
assignment operators. If you don’t, we have arranged a
pretty spectacular crash for your program. So there.

5.35.2.2 mysqlpp::mysql_type_info::mysql_type_info (enum_field_types t, bool
_unsigned = false, bool _null = false) [inline]

Create object from MySQL C API type info.

Parameters:

t the underlying C API type ID for this type

_unsigned if true, this is the unsigned version of the
type

_null if true, this type can hold a SQL null

Generated on Fri Feb 29 16:26:00 2008 for MySQL++ by Doxygen

5.35 mysqlpp::mysql_type_info Class Reference 107

5.35.2.3 mysqlpp::mysql_type_info::mysql_type_info (const std::type_info & t)
[inline]

Create object from a C++ type_info object.

This tries to map a C++ type to the closest MySQL data
type. It is necessarily somewhat approximate.

5.35.3 Member Function Documentation

5.35.3.1 const mysql_type_info mysqlpp::mysql_type_info::base_type () const
[inline]

Returns the type_info for the C++ type inside of the
mysqlpp::Null (p.114) type.

Returns the type_info for the C++ type inside the
mysqlpp::Null (p.114) type. If the type is not Null
(p.114) then this is the same as c_type() (p.107).

5.35.3.2 bool mysqlpp::mysql_type_info::before (mysql_type_info & b)
[inline]

Provides a way to compare two types for sorting.

Returns true if the SQL ID of this type is lower than
that of another. Used by mysqlpp::type_info_cmp when
comparing types.

5.35.3.3 const std::type_info& mysqlpp::mysql_type_info::c_type () const
[inline]

Returns the type_info for the C++ type associated with
the SQL type.

Returns the C++ type_info record corresponding to the SQL
type.

5.35.3.4 bool mysqlpp::mysql_type_info::escape_q () const

Returns true if the SQL type is of a type that needs to
be escaped.

Returns:

true if the type needs to be escaped for

Generated on Fri Feb 29 16:26:00 2008 for MySQL++ by Doxygen

108 MySQL++ Class Documentation

syntactically correct SQL.

5.35.3.5 int mysqlpp::mysql_type_info::id () const [inline]

Returns the ID of the SQL type.

Returns the ID number MySQL uses for this type. Note:
Do not depend on the value of this ID as it may change
between MySQL versions.

5.35.3.6 const char∗ mysqlpp::mysql_type_info::name () const [inline]

Returns an implementation-defined name of the C++ type.

Returns the name that would be returned by
typeid().name() (p.108) for the C++ type associated with
the SQL type.

5.35.3.7 mysql_type_info& mysqlpp::mysql_type_info::operator= (const
std::type_info & t) [inline]

Assign a C++ type_info object to this object.

This tries to map a C++ type to the closest MySQL data
type. It is necessarily somewhat approximate.

5.35.3.8 bool mysqlpp::mysql_type_info::quote_q () const

Returns true if the SQL type is of a type that needs to
be quoted.

Returns:

true if the type needs to be quoted for syntactically
correct SQL.

5.35.3.9 const char∗ mysqlpp::mysql_type_info::sql_name () const [inline]

Returns the name of the SQL type.

Returns the SQL name for the type.

Generated on Fri Feb 29 16:26:00 2008 for MySQL++ by Doxygen

5.35 mysqlpp::mysql_type_info Class Reference 109

5.35.4 Member Data Documentation

5.35.4.1 const enum_field_types mysqlpp::mysql_type_info::string_type =
MYSQL_TYPE_STRING [static]

The internal constant we use for our string type.

We expose this because other parts of MySQL++ need to
know what the string constant is at the moment.

The documentation for this class was generated from the
following files:

• type_info.h
• type_info.cpp

Generated on Fri Feb 29 16:26:00 2008 for MySQL++ by Doxygen

110 MySQL++ Class Documentation

5.36 mysqlpp::NamedPipeOption Class Reference

Suggest use of named pipes.

#include <options.h>

Inheritance diagram for mysqlpp::NamedPipeOption:

Collaboration diagram for mysqlpp::NamedPipeOption:

5.36.1 Detailed Description

Suggest use of named pipes.

The documentation for this class was generated from the
following file:

• options.h

Generated on Fri Feb 29 16:26:00 2008 for MySQL++ by Doxygen

5.37 mysqlpp::NoExceptions Class Reference 111

5.37 mysqlpp::NoExceptions Class Reference

Disable exceptions in an object derived from Optional-
Exceptions (p.126).

#include <noexceptions.h>

Collaboration diagram for mysqlpp::NoExceptions:

Public Member Functions

• NoExceptions (const OptionalExceptions &a)

Constructor.

• ∼NoExceptions ()

Destructor.

5.37.1 Detailed Description

Disable exceptions in an object derived from Optional-
Exceptions (p.126).

This class was designed to be created on the stack,
taking a reference to a subclass of OptionalExceptions
(p.126). (We call that our "associate" object.) On
creation, we save that object’s current exception state,
and disable exceptions. On destruction, we restore our
associate’s previous state.

5.37.2 Constructor & Destructor Documentation

5.37.2.1 mysqlpp::NoExceptions::NoExceptions (const OptionalExceptions &
a) [inline]

Constructor.

Generated on Fri Feb 29 16:26:00 2008 for MySQL++ by Doxygen

112 MySQL++ Class Documentation

Takes a reference to an OptionalExceptions (p.126)
derivative, saves that object’s current exception state,
and disables exceptions.

5.37.2.2 mysqlpp::NoExceptions::∼NoExceptions () [inline]

Destructor.

Restores our associate object’s previous exception state.

The documentation for this class was generated from the
following file:

• noexceptions.h

Generated on Fri Feb 29 16:26:00 2008 for MySQL++ by Doxygen

5.38 mysqlpp::NoSchemaOption Class Reference 113

5.38 mysqlpp::NoSchemaOption Class Reference

Disable db.tbl.col syntax in queries.

#include <options.h>

Inheritance diagram for mysqlpp::NoSchemaOption:

Collaboration diagram for mysqlpp::NoSchemaOption:

5.38.1 Detailed Description

Disable db.tbl.col syntax in queries.

The documentation for this class was generated from the
following file:

• options.h

Generated on Fri Feb 29 16:26:00 2008 for MySQL++ by Doxygen

114 MySQL++ Class Documentation

5.39 mysqlpp::Null< Type, Behavior > Class Template
Reference

Class for holding data from a SQL column with the NULL
attribute.

#include <null.h>

Collaboration diagram for mysqlpp::Null< Type, Behavior
>:

Public Types

• typedef Type value_type
Type of the data stored in this object, when it is not equal to SQL null.

Public Member Functions

• Null ()
Default constructor.

• Null (const Type &x)
Initialize the object with a particular value.

• Null (const null_type &)
Construct a Null (p. 114) equal to SQL null.

• operator Type & ()
Converts this object to Type.

• Null & operator= (const Type &x)
Assign a value to the object.

• Null & operator= (const null_type &n)
Assign SQL null to this object.

Generated on Fri Feb 29 16:26:00 2008 for MySQL++ by Doxygen

5.39 mysqlpp::Null< Type, Behavior > Class Template Reference 115

• bool operator== (const Null< Type > &rhs) const
Do equality comparison of two nullable values.

• bool operator== (const null_type &) const
Do equality comparison against hard-coded SQL null.

• bool operator!= (const Null< Type > &rhs) const
Do inequality comparison of two nullable values.

• bool operator!= (const null_type &rhs) const
Do inequality comparison against hard-coded SQL null.

• bool operator< (const Null< Type > &rhs) const
Do less-than comparison of two nullable values.

• bool operator< (const null_type &) const
Do less-than comparison against hard-coded SQL null.

Public Attributes

• Type data
The object’s value, when it is not SQL null.

• bool is_null
If set, this object is considered equal to SQL null.

5.39.1 Detailed Description

template<class Type, class Behavior = NullIsNull> class mysqlpp::Null< Type,
Behavior >

Class for holding data from a SQL column with the NULL
attribute.

This template is necessary because there is nothing in
the C++ type system with the same semantics as SQL’s
null. In SQL, a column can have the optional ’NULL’
attribute, so there is a difference in type between, say
an int column that can be null and one that cannot be.
C++’s NULL constant does not have these features.

Generated on Fri Feb 29 16:26:00 2008 for MySQL++ by Doxygen

116 MySQL++ Class Documentation

It’s important to realize that this class doesn’t hold
nulls, it holds data that can be null. It can hold a
non-null value, you can then assign null to it (using My-
SQL++’s global null object), and then assign a regular
value to it again; the object will behave as you expect
throughout this process.

Because one of the template parameters is a C++ type,
the typeid() for a null int is different than for a null
string, to pick two random examples. See type_info.cpp
for the table SQL types that can be null.

5.39.2 Constructor & Destructor Documentation

5.39.2.1 template<class Type, class Behavior = NullIsNull> mysqlpp::Null<
Type, Behavior >::Null () [inline]

Default constructor.

"data" member is left uninitialized by this ctor, because
we don’t know what to initialize it to.

5.39.2.2 template<class Type, class Behavior = NullIsNull> mysqlpp::Null<
Type, Behavior >::Null (const Type & x) [inline]

Initialize the object with a particular value.

The object is marked as "not null" if you use this
ctor. This behavior exists because the class doesn’t
encode nulls, but rather data which can be null. The
distinction is necessary because ’NULL’ is an optional
attribute of SQL columns.

5.39.2.3 template<class Type, class Behavior = NullIsNull> mysqlpp::Null<
Type, Behavior >::Null (const null_type &) [inline]

Construct a Null (p.114) equal to SQL null.

This is typically used with the global null object.
(Not to be confused with C’s NULL type.) You can say
something like...

///

...to get a null int.

Generated on Fri Feb 29 16:26:00 2008 for MySQL++ by Doxygen

5.39 mysqlpp::Null< Type, Behavior > Class Template Reference 117

5.39.3 Member Function Documentation

5.39.3.1 template<class Type, class Behavior = NullIsNull> mysqlpp::Null<
Type, Behavior >::operator Type & () [inline]

Converts this object to Type.

If is_null is set, returns whatever we consider that null
"is", according to the Behavior parameter you used when
instantiating this template. See NullIsNull (p.121),
NullIsZero (p.122) and NullIsBlank (p.120).

Otherwise, just returns the ’data’ member.

5.39.3.2 template<class Type, class Behavior = NullIsNull> bool
mysqlpp::Null< Type, Behavior >::operator< (const null_type &)
const [inline]

Do less-than comparison against hard-coded SQL null.

Always returns false because we can only be greater than
or equal to a SQL null.

5.39.3.3 template<class Type, class Behavior = NullIsNull> bool
mysqlpp::Null< Type, Behavior >::operator< (const Null< Type > &
rhs) const [inline]

Do less-than comparison of two nullable values.

Two null objects are equal to each other, and null is
less than not-null. If neither is null, we delegate to
operator < for the base data type.

5.39.3.4 template<class Type, class Behavior = NullIsNull> Null&
mysqlpp::Null< Type, Behavior >::operator= (const null_type & n)
[inline]

Assign SQL null to this object.

This just sets the is_null flag; the data member is not
affected until you call the Type() operator on it.

Generated on Fri Feb 29 16:26:00 2008 for MySQL++ by Doxygen

118 MySQL++ Class Documentation

5.39.3.5 template<class Type, class Behavior = NullIsNull> Null&
mysqlpp::Null< Type, Behavior >::operator= (const Type & x)
[inline]

Assign a value to the object.

This marks the object as "not null" as a side effect.

5.39.3.6 template<class Type, class Behavior = NullIsNull> bool
mysqlpp::Null< Type, Behavior >::operator== (const null_type &)
const [inline]

Do equality comparison against hard-coded SQL null.

This tells you the same thing as testing is_null member.

5.39.3.7 template<class Type, class Behavior = NullIsNull> bool
mysqlpp::Null< Type, Behavior >::operator== (const Null< Type > &
rhs) const [inline]

Do equality comparison of two nullable values.

Two null objects are equal, and null is not equal to
not-null. If neither is null, we delegate to operator
== for the base data type.

5.39.4 Member Data Documentation

5.39.4.1 template<class Type, class Behavior = NullIsNull> bool
mysqlpp::Null< Type, Behavior >::is_null

If set, this object is considered equal to SQL null.

This flag affects how the Type() and << operators work.

The documentation for this class was generated from the
following file:

• null.h

Generated on Fri Feb 29 16:26:00 2008 for MySQL++ by Doxygen

5.40 mysqlpp::null_type Class Reference 119

5.40 mysqlpp::null_type Class Reference

The type of the global mysqlpp::null object.

#include <null.h>

5.40.1 Detailed Description

The type of the global mysqlpp::null object.

User code shouldn’t declare variables of this type. Use
the Null (p.114) template instead.

The documentation for this class was generated from the
following file:

• null.h

Generated on Fri Feb 29 16:26:00 2008 for MySQL++ by Doxygen

120 MySQL++ Class Documentation

5.41 mysqlpp::NullIsBlank Struct Reference

Class for objects that define SQL null as a blank C
string.

#include <null.h>

5.41.1 Detailed Description

Class for objects that define SQL null as a blank C
string.

Returns "" when you ask what null is, and is empty when
you insert it into a C++ stream.

Used for the behavior parameter for template Null (p.114)

The documentation for this struct was generated from the
following file:

• null.h

Generated on Fri Feb 29 16:26:00 2008 for MySQL++ by Doxygen

5.42 mysqlpp::NullIsNull Struct Reference 121

5.42 mysqlpp::NullIsNull Struct Reference

Class for objects that define SQL null in terms of My-
SQL++’s null_type (p.119).

#include <null.h>

5.42.1 Detailed Description

Class for objects that define SQL null in terms of My-
SQL++’s null_type (p.119).

Returns a null_type (p.119) instance when you ask what
null is, and is "(NULL)" when you insert it into a C++
stream.

Used for the behavior parameter for template Null (p.114)

The documentation for this struct was generated from the
following file:

• null.h

Generated on Fri Feb 29 16:26:00 2008 for MySQL++ by Doxygen

122 MySQL++ Class Documentation

5.43 mysqlpp::NullIsZero Struct Reference

Class for objects that define SQL null as 0.

#include <null.h>

5.43.1 Detailed Description

Class for objects that define SQL null as 0.

Returns 0 when you ask what null is, and is zero when you
insert it into a C++ stream.

Used for the behavior parameter for template Null (p.114)

The documentation for this struct was generated from the
following file:

• null.h

Generated on Fri Feb 29 16:26:00 2008 for MySQL++ by Doxygen

5.44 mysqlpp::ObjectNotInitialized Class Reference 123

5.44 mysqlpp::ObjectNotInitialized Class Reference

Exception (p.87) thrown when you try to use an object
that isn’t completely initialized.

#include <exceptions.h>

Inheritance diagram for mysqlpp::ObjectNotInitialized:

Collaboration diagram for mysqlpp::ObjectNotInitialized:

Public Member Functions

• ObjectNotInitialized (const char ∗w="")
Create exception object.

5.44.1 Detailed Description

Exception (p.87) thrown when you try to use an object
that isn’t completely initialized.

The documentation for this class was generated from the
following file:

• exceptions.h

Generated on Fri Feb 29 16:26:00 2008 for MySQL++ by Doxygen

124 MySQL++ Class Documentation

5.45 mysqlpp::Option Class Reference

Define abstract interface for all ∗Option subclasses.

#include <options.h>

Inheritance diagram for mysqlpp::Option:

Public Types

• err_NONE

option was set successfully

• err_api_limit

option not supported by underlying C API

• err_api_reject

underlying C API returned error when setting option

• err_connected

can’t set the given option while connected

• enum Error { err_NONE, err_api_limit, err_api_reject, err_connected }

Types of option setting errors we can diagnose.

Generated on Fri Feb 29 16:26:00 2008 for MySQL++ by Doxygen

5.45 mysqlpp::Option Class Reference 125

Public Member Functions

• virtual ∼Option ()
Destroy object.

• virtual Error set (DBDriver ∗dbd)=0
Apply option.

5.45.1 Detailed Description

Define abstract interface for all ∗Option subclasses.

This is the base class for the mid-level interface
classes that take arguments, plus the direct base for
options that take no arguments.

5.45.2 Member Enumeration Documentation

5.45.2.1 enum mysqlpp::Option::Error

Types of option setting errors we can diagnose.

Enumerator:

err_NONE option was set successfully

err_api_limit option not supported by underlying C API

err_api_reject underlying C API returned error when
setting option

err_connected can’t set the given option while connected

The documentation for this class was generated from the
following file:

• options.h

Generated on Fri Feb 29 16:26:00 2008 for MySQL++ by Doxygen

126 MySQL++ Class Documentation

5.46 mysqlpp::OptionalExceptions Class Reference

Interface allowing a class to have optional exceptions.

#include <noexceptions.h>

Inheritance diagram for mysqlpp::OptionalExceptions:

Public Member Functions

• OptionalExceptions (bool e=true)
Default constructor.

• virtual ∼OptionalExceptions ()
Destroy object.

• void enable_exceptions () const
Enable exceptions from the object.

• void disable_exceptions () const
Disable exceptions from the object.

• bool throw_exceptions () const
Returns true if exceptions are enabled.

Protected Member Functions

• void set_exceptions (bool e) const
Sets the exception state to a particular value.

Friends

• class NoExceptions
Declare NoExceptions (p. 111) to be our friend so it can access our protected func-
tions.

Generated on Fri Feb 29 16:26:00 2008 for MySQL++ by Doxygen

5.46 mysqlpp::OptionalExceptions Class Reference 127

5.46.1 Detailed Description

Interface allowing a class to have optional exceptions.

A class derives from this one to acquire a standard
interface for disabling exceptions, possibly only
temporarily. By default, exceptions are enabled.

Note that all methods are const even though some of them
change our internal flag indicating whether exceptions
should be thrown. This is justifiable because this is
just an interface class, and it changes the behavior of
our subclass literally only in exceptional conditions.
This Jesuitical interpretation of "const" is required
because you may want to disable exceptions on const
subclass instances.

If it makes you feel better about this, consider that the
real change isn’t within the const OptionalExceptions
(p.126) subclass instance. What changes is the code
wrapping the method call on that instance that can
optionally throw an exception. This outside code is
in a better position to say what "const" means than the
subclass instance.

5.46.2 Constructor & Destructor Documentation

5.46.2.1 mysqlpp::OptionalExceptions::OptionalExceptions (bool e = true)
[inline]

Default constructor.

Parameters:

e if true, exceptions are enabled (this is the
default)

5.46.3 Member Function Documentation

5.46.3.1 void mysqlpp::OptionalExceptions::set_exceptions (bool e) const
[inline, protected]

Sets the exception state to a particular value.

This method is protected because it is only intended for
use by subclasses’ copy constructors and the like.

Generated on Fri Feb 29 16:26:00 2008 for MySQL++ by Doxygen

128 MySQL++ Class Documentation

The documentation for this class was generated from the
following file:

• noexceptions.h

Generated on Fri Feb 29 16:26:00 2008 for MySQL++ by Doxygen

5.47 mysqlpp::ProtocolOption Class Reference 129

5.47 mysqlpp::ProtocolOption Class Reference

Set (p.190) type of protocol to use.

#include <options.h>

Inheritance diagram for mysqlpp::ProtocolOption:

Collaboration diagram for mysqlpp::ProtocolOption:

5.47.1 Detailed Description

Set (p.190) type of protocol to use.

The documentation for this class was generated from the
following file:

• options.h

Generated on Fri Feb 29 16:26:00 2008 for MySQL++ by Doxygen

130 MySQL++ Class Documentation

5.48 mysqlpp::Query Class Reference

A class for building and executing SQL queries.

#include <query.h>

Inheritance diagram for mysqlpp::Query:

Collaboration diagram for mysqlpp::Query:

Public Member Functions

• Query (Connection ∗c, bool te=true, const char ∗qstr=0)
Create a new query object attached to a connection.

• Query (const Query &q)
Create a new query object as a copy of another.

• ulonglong affected_rows ()
Return the number of rows affected by the last query.

• size_t escape_string (std::string ∗ps, const char ∗original=0, size_t length=0)
const

Return a SQL-escaped version of a character buffer.

Generated on Fri Feb 29 16:26:00 2008 for MySQL++ by Doxygen

5.48 mysqlpp::Query Class Reference 131

• size_t escape_string (char ∗escaped, const char ∗original, size_t length)
const

Return a SQL-escaped version of the given character buffer.

• int errnum () const
Get the last error number that was set.

• const char ∗ error () const
Get the last error message that was set.

• std::string info ()
Returns information about the most recently executed query.

• ulonglong insert_id ()
Get ID generated for an AUTO_INCREMENT column in the previous INSERT
query.

• Query & operator= (const Query &rhs)
Assign another query’s state to this object.

• operator private_bool_type () const
Test whether the object has experienced an error condition.

• void parse ()
Treat the contents of the query string as a template query.

• void reset ()
Reset the query object so that it can be reused.

• std::string str ()
Get built query as a C++ string.

• std::string str (const SQLTypeAdapter &arg0)
Get built query as a C++ string with template query parameter substitution.

• std::string str (SQLQueryParms &p)
Get built query as a null-terminated C++ string.

• bool exec ()
Execute a built-up query.

• bool exec (const std::string &str)
Execute a query.

Generated on Fri Feb 29 16:26:00 2008 for MySQL++ by Doxygen

132 MySQL++ Class Documentation

• SimpleResult execute ()
Execute built-up query.

• SimpleResult execute (SQLQueryParms &p)
Execute template query using given parameters.

• SimpleResult execute (const SQLTypeAdapter &str)
Execute a query that returns no rows.

• SimpleResult execute (const char ∗str, size_t len)
Execute query in a known-length string of characters. This can include null char-
acters.

• UseQueryResult use ()
Execute a query that can return rows, with access to the rows in sequence.

• UseQueryResult use (SQLQueryParms &p)
Execute a template query that can return rows, with access to the rows in sequence.

• UseQueryResult use (const SQLTypeAdapter &str)
Execute a query that can return rows, with access to the rows in sequence.

• UseQueryResult use (const char ∗str, size_t len)
Execute a query that can return rows, with access to the rows in sequence.

• StoreQueryResult store ()
Execute a query that can return a result set.

• StoreQueryResult store (SQLQueryParms &p)
Store results from a template query using given parameters.

• StoreQueryResult store (const SQLTypeAdapter &str)
Execute a query that can return rows, returning all of the rows in a random-access
container.

• StoreQueryResult store (const char ∗str, size_t len)
Execute a query that can return rows, returning all of the rows in a random-access
container.

• template<typename Function> Function for_each (const SQLTypeAdapter
&query, Function fn)

Execute a query, and call a functor for each returned row.

Generated on Fri Feb 29 16:26:00 2008 for MySQL++ by Doxygen

5.48 mysqlpp::Query Class Reference 133

• template<typename Function> Function for_each (Function fn)
Execute the query, and call a functor for each returned row.

• template<class SSQLS, typename Function> Function for_each (const
SSQLS &ssqls, Function fn)

Run a functor for every row in a table.

• template<class Sequence, typename Function> Function store_if (Se-
quence &con, const SQLTypeAdapter &query, Function fn)

Execute a query, conditionally storing each row in a container.

• template<class Sequence, class SSQLS, typename Function> Function
store_if (Sequence &con, const SSQLS &ssqls, Function fn)

Pulls every row in a table, conditionally storing each one in a container.

• template<class Sequence, typename Function> Function store_if (Se-
quence &con, Function fn)

Execute the query, conditionally storing each row in a container.

• StoreQueryResult store_next ()
Return next result set, when processing a multi-query.

• bool more_results ()
Return whether more results are waiting for a multi-query or stored procedure re-
sponse.

• template<class Sequence> void storein_sequence (Sequence &con)
Execute a query, storing the result set in an STL sequence container.

• template<class Sequence> void storein_sequence (Sequence &con, const
SQLTypeAdapter &s)

Executes a query, storing the result rows in an STL sequence container.

• template<class Seq> void storein_sequence (Seq &con, SQLQueryParms
&p)

Execute template query using given parameters, storing.

• template<class Set> void storein_set (Set &con)
Execute a query, storing the result set in an STL associative container.

• template<class Set> void storein_set (Set &con, const SQLTypeAdapter
&s)

Generated on Fri Feb 29 16:26:00 2008 for MySQL++ by Doxygen

134 MySQL++ Class Documentation

Executes a query, storing the result rows in an STL set-associative container.

• template<class Set> void storein_set (Set &con, SQLQueryParms &p)

Execute template query using given parameters, storing.

• template<class Container> void storein (Container &con)

Execute a query, and store the entire result set in an STL container.

• template<class T> void storein (std::vector< T > &con, const SQLType-
Adapter &s)

Specialization of storein_sequence() (p. 150) for std::vector.

• template<class T> void storein (std::deque< T > &con, const SQLType-
Adapter &s)

Specialization of storein_sequence() (p. 150) for std::deque.

• template<class T> void storein (std::list< T > &con, const SQLType-
Adapter &s)

Specialization of storein_sequence() (p. 150) for std::list.

• template<class T> void storein (std::set< T > &con, const SQLType-
Adapter &s)

Specialization of storein_set() (p. 151) for std::set.

• template<class T> void storein (std::multiset< T > &con, const SQLType-
Adapter &s)

Specialization of storein_set() (p. 151) for std::multiset.

• template<class T> Query & update (const T &o, const T &n)

Replace an existing row’s data with new data.

• template<class T> Query & insert (const T &v)

Insert a new row.

• template<class Iter> Query & insert (Iter first, Iter last)

Insert multiple new rows.

• template<class T> Query & replace (const T &v)

Insert new row unless there is an existing row that matches on a unique index, in
which case we replace it.

Generated on Fri Feb 29 16:26:00 2008 for MySQL++ by Doxygen

5.48 mysqlpp::Query Class Reference 135

Public Attributes

• SQLQueryParms template_defaults
The default template parameters.

Friends

• class SQLQueryParms

5.48.1 Detailed Description

A class for building and executing SQL queries.

One does not generally create Query (p.130) objects
directly. Instead, call mysqlpp::Connection::query()
(p.41) to get one tied to that connection.

There are several ways to build and execute SQL queries
with this class.

The way most like other database libraries is to pass a
SQL statement in either the form of a C or C++ string to
one of the exec∗(), (p.140) store∗(), (p.146) or use()
(p.154) methods. The query is executed immediately, and
any results returned.

For more complicated queries, it’s often more convenient
to build up the query string over several C++ statements
using Query’s stream interface. It works like any other
C++ stream (std::cout, std::ostringstream, etc.) in that
you can just insert things into the stream, building
the query up piece by piece. When the query string is
complete, you call the overloaded version of exec∗(),
(p.140) store∗(), (p.146) or use() (p.154) takes no
parameters, which executes the built query and returns
any results.

If you are using the library’s Specialized SQL Structures
feature, Query (p.130) has several special functions for
generating common SQL queries from those structures. For
instance, it offers the insert() (p.143) method, which
builds an INSERT query to add the contents of the SSQLS
to the database. As with the stream interface, these
methods only build the query string; call one of the
parameterless methods mentioned previously to actually
execute the query.

Generated on Fri Feb 29 16:26:00 2008 for MySQL++ by Doxygen

136 MySQL++ Class Documentation

Finally, you can build "template queries". This is
something like C’s printf() function, in that you insert
a specially-formatted query string into the object which
contains placeholders for data. You call the parse()
(p.144) method to tell the Query (p.130) object that
the query string contains placeholders. Having done
that, you call one of the the many exec∗(), (p.140)
store∗(), (p.145) or use() (p.153) overloads that take
SQLTypeAdapter (p.206) objects. There are 25 of each
by default, differing only in the number of STA objects
they take. (See lib/querydef.pl if you need to change
the limit, or examples/tquery2.cpp for a way around it
that doesn’t require changing the library.) Only the
version taking a single STA object is documented below,
as to document all of them would just be repetitive. For
each Query (p.130) method that takes a single STA object,
there’s a good chance there’s a set of undocumented
overloads that take more of them for the purpose of
filling out a template query.

See the user manual for more details about these options.

5.48.2 Constructor & Destructor Documentation

5.48.2.1 mysqlpp::Query::Query (Connection ∗ c, bool te = true, const char ∗
qstr = 0)

Create a new query object attached to a connection.

This is the constructor used by mysqlpp::Connection::query()
(p.41).

Parameters:

c connection the finished query should be sent out on

te if true, throw exceptions on errors

qstr an optional initial query string

5.48.2.2 mysqlpp::Query::Query (const Query & q)

Create a new query object as a copy of another.

This is not a traditional copy ctor! Its only purpose
is to make it possible to assign the return of
Connection::query() (p.41) to an empty Query (p.130)

Generated on Fri Feb 29 16:26:00 2008 for MySQL++ by Doxygen

5.48 mysqlpp::Query Class Reference 137

object. In particular, the stream buffer and template
query stuff will be empty in the copy, regardless of what
values they have in the original.

5.48.3 Member Function Documentation

5.48.3.1 int mysqlpp::Query::errnum () const

Get the last error number that was set.

This just delegates to Connection::errnum() (p.34).
Query (p.130) has nothing extra to say, so use either,
as makes sense in your program.

5.48.3.2 const char ∗ mysqlpp::Query::error () const

Get the last error message that was set.

This just delegates to Connection::error() (p.39). Query
(p.130) has nothing extra to say, so use either, as makes
sense in your program.

5.48.3.3 size_t mysqlpp::Query::escape_string (char ∗ escaped, const char ∗
original, size_t length) const

Return a SQL-escaped version of the given character
buffer.

Parameters:

escaped character buffer to hold escaped version; must
point to at least (length ∗ 2 + 1) bytes

original pointer to the character buffer to escape

length number of characters to escape

Return values:

number of characters placed in escaped

This is part of Query (p.130) because proper SQL escaping
takes the database’s current character set into account,
which requires access to the Connection (p.33) object
the query will go out on. Also, this function is very
important to MySQL++’s Query (p.130) stream manipulator
mechanism, so it’s more convenient for this method to
live in Query (p.130) rather than Connection (p.33).

Generated on Fri Feb 29 16:26:00 2008 for MySQL++ by Doxygen

138 MySQL++ Class Documentation

5.48.3.4 size_t mysqlpp::Query::escape_string (std::string ∗ ps, const char ∗
original = 0, size_t length = 0) const

Return a SQL-escaped version of a character buffer.

Parameters:

ps pointer to C++ string to hold escaped version; if
original is 0, also holds the original data to be
escaped

original if given, pointer to the character buffer to
escape instead of contents of ∗ps

length if both this and original are given, number of
characters to escape instead of ps->length()

Return values:

number of characters placed in ∗ps

This method has three basic operation modes:

• Pass just a pointer to a C++ string containing the
original data to escape, plus act as receptacle for
escaped version

• Pass a pointer to a C++ string to receive escaped
string plus a pointer to a C string to be escaped

• Pass nonzero for all parameters, taking original to
be a pointer to an array of char with given length;
does not treat null characters as special

There’s a degenerate fourth mode, where ps is zero:
simply returns 0, because there is nowhere to store the
result.

Note that if original is 0, we always ignore the length
parameter even if it is nonzero. Length always comes
from ps->length() in this case.

ps is a pointer because if it were a reference, the other
overload would be impossible to call: the compiler would
complain that the two overloads are ambiguous because
std::string has a char∗ conversion ctor. A nice bonus
is that pointer syntax makes it clearer that the first
parameter is an "out" parameter.

Generated on Fri Feb 29 16:26:00 2008 for MySQL++ by Doxygen

5.48 mysqlpp::Query Class Reference 139

See also:

comments for escape_string(char∗, const char∗, size_-
t) for further details.

5.48.3.5 bool mysqlpp::Query::exec (const std::string & str)

Execute a query.

Same as execute() (p.140), except that it only returns a
flag indicating whether the query succeeded or not. It
is basically a thin wrapper around the C API function
mysql_real_query().

Parameters:

str the query to execute

Returns:

true if query was executed successfully

See also:

execute() (p.140), store() (p.146), storein() (p.149),
and use() (p.154)

5.48.3.6 bool mysqlpp::Query::exec () [inline]

Execute a built-up query.

Same as exec() (p.139), except that it uses the query
string built up within the query object already instead
of accepting a query string from the caller.

Returns:

true if query was executed successfully

See also:

exec(const std::string& str) (p.139), execute()
(p.140), store() (p.146), storein() (p.149), and use()
(p.154)

Generated on Fri Feb 29 16:26:00 2008 for MySQL++ by Doxygen

140 MySQL++ Class Documentation

5.48.3.7 SimpleResult mysqlpp::Query::execute (const char ∗ str, size_t len)

Execute query in a known-length string of characters.
This can include null characters.

Executes the query immediately, and returns the results.

5.48.3.8 SimpleResult mysqlpp::Query::execute (const SQLTypeAdapter & str)

Execute a query that returns no rows.

Parameters:

str if this object is set up as a template query, this
is the value to substitute for the first template
query parameter; else, it is the SQL query string
to execute

Because SQLTypeAdapter (p.206) can be initialized from
either a C string or a C++ string, this overload accepts
query strings in either form. Beware, SQLTypeAdapter
(p.206) also accepts many other data types (this is
its raison d’etre), so it will let you write code that
compiles but results in bogus SQL queries.

To support template queries, there many more overloads
of this type (25 total, by default; see lib/querydef.pl),
each taking one more SQLTypeAdapter (p.206) object than
the previous one. See the template query overview above
for more about this topic.

5.48.3.9 SimpleResult mysqlpp::Query::execute (SQLQueryParms & p)

Execute template query using given parameters.

Parameters:

p parameters to use in the template query.

5.48.3.10 SimpleResult mysqlpp::Query::execute () [inline]

Execute built-up query.

Use one of the execute() (p.140) overloads if you don’t
expect the server to return a result set. For instance,

Generated on Fri Feb 29 16:26:00 2008 for MySQL++ by Doxygen

5.48 mysqlpp::Query Class Reference 141

a DELETE query. The returned SimpleResult (p.195) object
contains status information from the server, such as
whether the query succeeded, and if so how many rows were
affected.

This overloaded version of execute() (p.140) simply
executes the query that you have built up in the object
in some way. (For instance, via the insert() (p.143)
method, or by using the object’s stream interface.)

Returns:

SimpleResult (p.195) status information about the
query

See also:

exec() (p.139), store() (p.146), storein() (p.149),
and use() (p.154)

5.48.3.11 template<class SSQLS, typename Function> Function
mysqlpp::Query::for_each (const SSQLS & ssqls, Function fn)
[inline]

Run a functor for every row in a table.

Just like for_each(Function) (p.141), except that it
builds a "select ∗ from TABLE" query using the SQL table
name from the SSQLS instance you pass.

Parameters:

ssqls the SSQLS instance to get a table name from

fn the functor called for each row

Returns:

a copy of the passed functor

5.48.3.12 template<typename Function> Function mysqlpp::Query::for_each
(Function fn) [inline]

Execute the query, and call a functor for each returned
row.

Just like for_each(const SQLTypeAdapter&, Function)
(p.142), but it uses the query string held by the Query
(p.130) object already

Generated on Fri Feb 29 16:26:00 2008 for MySQL++ by Doxygen

142 MySQL++ Class Documentation

Parameters:

fn the functor called for each row

Returns:

a copy of the passed functor

5.48.3.13 template<typename Function> Function mysqlpp::Query::for_each
(const SQLTypeAdapter & query, Function fn) [inline]

Execute a query, and call a functor for each returned
row.

This method wraps a use() (p.154) query, calling the
given functor for every returned row. It is analogous
to STL’s for_each() (p.142) algorithm, but instead of
iterating over some range within a container, it iterates
over a result set produced by a query.

Parameters:

query the query string

fn the functor called for each row

Returns:

a copy of the passed functor

5.48.3.14 template<class Iter> Query& mysqlpp::Query::insert (Iter first, Iter
last) [inline]

Insert multiple new rows.

Builds an INSERT SQL query using items from a range
within an STL container. Insert the entire contents of
the container by using the begin() and end() iterators of
the container as parameters to this function.

Parameters:

first iterator pointing to first element in range to
insert

last iterator pointing to one past the last element to
insert

See also:

replace() (p.144), update() (p.152)

Generated on Fri Feb 29 16:26:00 2008 for MySQL++ by Doxygen

5.48 mysqlpp::Query Class Reference 143

5.48.3.15 template<class T> Query& mysqlpp::Query::insert (const T & v)
[inline]

Insert a new row.

This function builds an INSERT SQL query. One uses it
with MySQL++’s Specialized SQL Structures mechanism.

Parameters:

v new row

See also:

replace() (p.144), update() (p.152)

5.48.3.16 ulonglong mysqlpp::Query::insert_id ()

Get ID generated for an AUTO_INCREMENT column in the
previous INSERT query.

Return values:

0 if the previous query did not generate an ID. Use
the SQL function LAST_INSERT_ID() if you need
the last ID generated by any query, not just the
previous one.

5.48.3.17 bool mysqlpp::Query::more_results ()

Return whether more results are waiting for a multi-query
or stored procedure response.

If this function returns true, you must call store_-
next() (p.148) to fetch the next result set before you
can execute more queries.

Wraps mysql_more_results() in the MySQL C API. That
function only exists in MySQL v4.1 and higher.
Therefore, this function always returns false when built
against older API libraries.

Returns:

true if another result set exists

Generated on Fri Feb 29 16:26:00 2008 for MySQL++ by Doxygen

144 MySQL++ Class Documentation

5.48.3.18 mysqlpp::Query::operator Query::private_bool_type () const

Test whether the object has experienced an error
condition.

Allows for code constructs like this:

///

This method returns false if either the Query (p.130)
object or its associated Connection (p.33) object has
seen an error condition since the last operation.

5.48.3.19 Query & mysqlpp::Query::operator= (const Query & rhs)

Assign another query’s state to this object.

The same caveats apply to this operator as apply to the
copy ctor.

5.48.3.20 void mysqlpp::Query::parse ()

Treat the contents of the query string as a template
query.

This method sets up the internal structures used by
all of the other members that accept template query
parameters. See the "Template Queries" chapter in the
user manual for more information.

5.48.3.21 template<class T> Query& mysqlpp::Query::replace (const T & v)
[inline]

Insert new row unless there is an existing row that
matches on a unique index, in which case we replace it.

This function builds a REPLACE SQL query. One uses it
with MySQL++’s Specialized SQL Structures mechanism.

Parameters:

v new row

Generated on Fri Feb 29 16:26:00 2008 for MySQL++ by Doxygen

5.48 mysqlpp::Query Class Reference 145

See also:

insert() (p.143), update() (p.152)

5.48.3.22 void mysqlpp::Query::reset ()

Reset the query object so that it can be reused.

As of v3.0, Query (p.130) objects auto-reset upon query
execution unless you’ve set it up for making template
queries. (It can’t auto-reset in that situation, because
it would forget the template info.) Therefore, the only
time you must call this is if you have a Query (p.130)
object set up for making template queries, then want to
build queries using one of the other methods. (Static
strings, SSQLS, or the stream interface.)

5.48.3.23 StoreQueryResult mysqlpp::Query::store (const char ∗ str, size_t len)

Execute a query that can return rows, returning all of
the rows in a random-access container.

This overload is for situations where you have the query
in a C string and have its length already. If you want
to execute a query in a null-terminated C string or have
the query string in some other form, you probably want
to call store(const SQLTypeAdapter&) (p.145) instead.
SQLTypeAdapter (p.206) converts from plain C strings and
other useful data types implicitly.

5.48.3.24 StoreQueryResult mysqlpp::Query::store (const SQLTypeAdapter &
str)

Execute a query that can return rows, returning all of
the rows in a random-access container.

Parameters:

str if this object is set up as a template query, this
is the value to substitute for the first template
query parameter; else, it is the SQL query string
to execute

Because SQLTypeAdapter (p.206) can be initialized from
either a C string or a C++ string, this overload accepts

Generated on Fri Feb 29 16:26:00 2008 for MySQL++ by Doxygen

146 MySQL++ Class Documentation

query strings in either form. Beware, SQLTypeAdapter
(p.206) also accepts many other data types (this is
its raison d’etre), so it will let you write code that
compiles but results in bogus SQL queries.

To support template queries, there many more overloads
of this type (25 total, by default; see lib/querydef.pl),
each taking one more SQLTypeAdapter (p.206) object than
the previous one. See the template query overview above
for more about this topic.

5.48.3.25 StoreQueryResult mysqlpp::Query::store (SQLQueryParms & p)

Store results from a template query using given
parameters.

Parameters:

p parameters to use in the template query.

5.48.3.26 StoreQueryResult mysqlpp::Query::store () [inline]

Execute a query that can return a result set.

Use one of the store() (p.146) overloads to execute a
query and retrieve the entire result set into memory.
This is useful if you actually need all of the records at
once, but if not, consider using one of the use() (p.154)
methods instead, which returns the results one at a time,
so they don’t allocate as much memory as store() (p.146).

You must use store() (p.146), storein() (p.149) or use()
(p.154) for SELECT, SHOW, DESCRIBE and EXPLAIN queries.
You can use these functions with other query types, but
since they don’t return a result set, exec() (p.139) and
execute() (p.140) are more efficient.

The name of this method comes from the MySQL C API
function it is implemented in terms of, mysql_store_-
result().

This function has the same set of overloads as execute()
(p.140).

Returns:

StoreQueryResult (p.217) object containing entire
result set

Generated on Fri Feb 29 16:26:00 2008 for MySQL++ by Doxygen

5.48 mysqlpp::Query Class Reference 147

See also:

exec() (p.139), execute() (p.140), storein() (p.149),
and use() (p.154)

5.48.3.27 template<class Sequence, typename Function> Function
mysqlpp::Query::store_if (Sequence & con, Function fn) [inline]

Execute the query, conditionally storing each row in a
container.

Just like store_if(Sequence&, const SQLTypeAdapter&,
Function) (p.148), but it uses the query string held by
the Query (p.130) object already

Parameters:

con the destination container; needs a push_back()
method

fn the functor called for each row

Returns:

a copy of the passed functor

5.48.3.28 template<class Sequence, class SSQLS, typename Function>
Function mysqlpp::Query::store_if (Sequence & con, const SSQLS &
ssqls, Function fn) [inline]

Pulls every row in a table, conditionally storing each
one in a container.

Just like store_if(Sequence&, const SQLTypeAdapter&,
Function) (p.148), but it uses the SSQLS instance to
construct a "select ∗ from TABLE" query, using the table
name field in the SSQLS.

Parameters:

con the destination container; needs a push_back()
method

ssqls the SSQLS instance to get a table name from

fn the functor called for each row

Returns:

a copy of the passed functor

Generated on Fri Feb 29 16:26:00 2008 for MySQL++ by Doxygen

148 MySQL++ Class Documentation

5.48.3.29 template<class Sequence, typename Function> Function
mysqlpp::Query::store_if (Sequence & con, const SQLTypeAdapter
& query, Function fn) [inline]

Execute a query, conditionally storing each row in a
container.

This method wraps a use() (p.154) query, calling the
given functor for every returned row, and storing the
results in the given sequence container if the functor
returns true.

This is analogous to the STL copy_if() algorithm, except
that the source rows come from a database query instead
of another container. (copy_if() isn’t a standard
STL algorithm, but only due to an oversight by the
standardization committee.) This fact may help you to
remember the order of the parameters: the container is
the destination, the query is the source, and the functor
is the predicate; it’s just like an STL algorithm.

Parameters:

con the destination container; needs a push_back()
method

query the query string

fn the functor called for each row

Returns:

a copy of the passed functor

5.48.3.30 StoreQueryResult mysqlpp::Query::store_next ()

Return next result set, when processing a multi-query.

There are two cases where you’d use this function instead
of the regular store() (p.146) functions.

First, when handling the result of executing multiple
queries at once. (See this page in the MySQL
documentation for details.)

Second, when calling a stored procedure, MySQL can return
the result as a set of results.

In either case, you must consume all results before
making another MySQL query, even if you don’t care about
the remaining results or result sets.

Generated on Fri Feb 29 16:26:00 2008 for MySQL++ by Doxygen

5.48 mysqlpp::Query Class Reference 149

As the MySQL documentation points out, you must set the
MYSQL_OPTION_MULTI_STATEMENTS_ON flag on the connection
in order to use this feature. See Connection::set_-
option() (p.41).

Multi-queries only exist in MySQL v4.1 and higher.
Therefore, this function just wraps store() (p.146) when
built against older API libraries.

Returns:

StoreQueryResult (p.217) object containing the next
result set.

5.48.3.31 template<class Container> void mysqlpp::Query::storein (Container
& con) [inline]

Execute a query, and store the entire result set in an
STL container.

This is a set of specialized template functions that
call either storein_sequence() (p.150) or storein_set()
(p.151), depending on the type of container you pass it.
It understands std::vector, deque, list, slist (a common
C++ library extension), set, and multiset.

Like the functions it wraps, this is actually an
overloaded set of functions. See the other functions’
documentation for details.

Use this function if you think you might someday switch
your program from using a set-associative container to
a sequence container for storing result sets, or vice
versa.

See exec() (p.139), execute() (p.140), store() (p.146),
and use() (p.154) for alternative query execution
mechanisms.

5.48.3.32 template<class Seq> void mysqlpp::Query::storein_sequence (Seq &
con, SQLQueryParms & p) [inline]

Execute template query using given parameters, storing.

Parameters:

con container that will receive the results

p parameters to use in the template query.

Generated on Fri Feb 29 16:26:00 2008 for MySQL++ by Doxygen

150 MySQL++ Class Documentation

5.48.3.33 template<class Sequence> void mysqlpp::Query::storein_sequence
(Sequence & con, const SQLTypeAdapter & s) [inline]

Executes a query, storing the result rows in an STL
sequence container.

Parameters:

con the container to store the results in

s if Query (p.130) is set up as a template query, this
is the value to substitute for the first template
query parameter; else, the SQL query string

There many more overloads of this type (25 total, by
default; see lib/querydef.pl), each taking one more
SQLTypeAdapter (p.206) object than the previous one. See
the template query overview above for more about this
topic.

5.48.3.34 template<class Sequence> void mysqlpp::Query::storein_sequence
(Sequence & con) [inline]

Execute a query, storing the result set in an STL
sequence container.

This function works much like store() (p.146) from the
caller’s perspective, because it returns the entire
result set at once. It’s actually implemented in terms
of use() (p.154), however, so that memory for the result
set doesn’t need to be allocated twice.

There are many overloads for this function, pretty much
the same as for execute() (p.140), except that there is
a Container parameter at the front of the list. So, you
can pass a container and a query string, or a container
and template query parameters.

Parameters:

con any STL sequence container, such as std::vector

See also:

exec() (p.139), execute() (p.140), store() (p.146),
and use() (p.154)

Generated on Fri Feb 29 16:26:00 2008 for MySQL++ by Doxygen

5.48 mysqlpp::Query Class Reference 151

5.48.3.35 template<class Set> void mysqlpp::Query::storein_set (Set & con,
SQLQueryParms & p) [inline]

Execute template query using given parameters, storing.

Parameters:

con container that will receive the results

p parameters to use in the template query.

5.48.3.36 template<class Set> void mysqlpp::Query::storein_set (Set & con,
const SQLTypeAdapter & s) [inline]

Executes a query, storing the result rows in an STL
set-associative container.

Parameters:

con the container to store the results in

s if Query (p.130) is set up as a template query, this
is the value to substitute for the first template
query parameter; else, the SQL query string

There many more overloads of this type (25 total, by
default; see lib/querydef.pl), each taking one more
SQLTypeAdapter (p.206) object than the previous one. See
the template query overview above for more about this
topic.

5.48.3.37 template<class Set> void mysqlpp::Query::storein_set (Set & con)
[inline]

Execute a query, storing the result set in an STL
associative container.

The same thing as storein_sequence() (p.150), except
that it’s used with associative STL containers, such as
std::set. Other than that detail, that method’s comments
apply equally well to this one.

5.48.3.38 std::string mysqlpp::Query::str (SQLQueryParms & p)

Get built query as a null-terminated C++ string.

Generated on Fri Feb 29 16:26:00 2008 for MySQL++ by Doxygen

152 MySQL++ Class Documentation

Parameters:

p template query parameters to use, overriding the
ones this object holds, if any

5.48.3.39 std::string mysqlpp::Query::str (const SQLTypeAdapter & arg0)
[inline]

Get built query as a C++ string with template query
parameter substitution.

Parameters:

arg0 the value to substitute for the first template
query parameter; because SQLTypeAdapter (p.206)
implicitly converts from many different data
types, this method is very flexible in what it
accepts as a parameter. You shouldn’t have to
use the SQLTypeAdapter (p.206) data type directly
in your code.

There many more overloads of this type (25 total, by
default; see lib/querydef.pl), each taking one more
SQLTypeAdapter (p.206) object than the previous one. See
the template query overview above for more about this
topic.

5.48.3.40 template<class T> Query& mysqlpp::Query::update (const T & o,
const T & n) [inline]

Replace an existing row’s data with new data.

This function builds an UPDATE SQL query using the new
row data for the SET clause, and the old row data for the
WHERE clause. One uses it with MySQL++’s Specialized SQL
Structures mechanism.

Parameters:

o old row

n new row

See also:

insert() (p.143), replace() (p.144)

Generated on Fri Feb 29 16:26:00 2008 for MySQL++ by Doxygen

5.48 mysqlpp::Query Class Reference 153

5.48.3.41 UseQueryResult mysqlpp::Query::use (const char ∗ str, size_t len)

Execute a query that can return rows, with access to the
rows in sequence.

This overload is for situations where you have the query
in a C string and have its length already. If you want
to execute a query in a null-terminated C string or
have the query string in some other form, you probably
want to call use(const SQLTypeAdapter&) (p.153) instead.
SQLTypeAdapter (p.206) converts from plain C strings and
other useful data types implicitly.

5.48.3.42 UseQueryResult mysqlpp::Query::use (const SQLTypeAdapter & str)

Execute a query that can return rows, with access to the
rows in sequence.

Parameters:

str if this object is set up as a template query, this
is the value to substitute for the first template
query parameter; else, it is the SQL query string
to execute

Because SQLTypeAdapter (p.206) can be initialized from
either a C string or a C++ string, this overload accepts
query strings in either form. Beware, SQLTypeAdapter
(p.206) also accepts many other data types (this is
its raison d’etre), so it will let you write code that
compiles but results in bogus SQL queries.

To support template queries, there many more overloads
of this type (25 total, by default; see lib/querydef.pl),
each taking one more SQLTypeAdapter (p.206) object than
the previous one. See the template query overview above
for more about this topic.

5.48.3.43 UseQueryResult mysqlpp::Query::use (SQLQueryParms & p)

Execute a template query that can return rows, with
access to the rows in sequence.

Parameters:

p parameters to use in the template query.

Generated on Fri Feb 29 16:26:00 2008 for MySQL++ by Doxygen

154 MySQL++ Class Documentation

5.48.3.44 UseQueryResult mysqlpp::Query::use () [inline]

Execute a query that can return rows, with access to the
rows in sequence.

Use one of the use() (p.154) overloads if memory
efficiency is important. They return an object that
can walk through the result records one by one, without
fetching the entire result set from the server. This
is superior to store() (p.146) when there are a large
number of results; store() (p.146) would have to allocate
a large block of memory to hold all those records, which
could cause problems.

A potential downside of this method is that MySQL
database resources are tied up until the result set is
completely consumed. Do your best to walk through the
result set as expeditiously as possible.

The name of this method comes from the MySQL C API
function that initiates the retrieval process, mysql_-
use_result(). This method is implemented in terms of
that function.

This function has the same set of overloads as execute()
(p.140).

Returns:

UseQueryResult (p.254) object that can walk through
result set serially

See also:

exec() (p.139), execute() (p.140), store() (p.146) and
storein() (p.149)

5.48.4 Member Data Documentation

5.48.4.1 SQLQueryParms mysqlpp::Query::template_defaults

The default template parameters.

Used for filling in parameterized queries.

The documentation for this class was generated from the
following files:

• query.h

Generated on Fri Feb 29 16:26:00 2008 for MySQL++ by Doxygen

5.48 mysqlpp::Query Class Reference 155

• query.cpp

Generated on Fri Feb 29 16:26:00 2008 for MySQL++ by Doxygen

156 MySQL++ Class Documentation

5.49 mysqlpp::ReadDefaultFileOption Class Refer-
ence

Override use of my.cnf.

#include <options.h>

Inheritance diagram for mysqlpp::ReadDefaultFileOption:

Collaboration diagram for mysqlpp::ReadDefaultFileOption:

5.49.1 Detailed Description

Override use of my.cnf.

The documentation for this class was generated from the
following file:

• options.h

Generated on Fri Feb 29 16:26:00 2008 for MySQL++ by Doxygen

5.50 mysqlpp::ReadDefaultGroupOption Class Reference 157

5.50 mysqlpp::ReadDefaultGroupOption Class Refer-
ence

Override use of my.cnf.

#include <options.h>

Inheritance diagram for mysqlpp::ReadDefaultGroupOption:

Collaboration diagram for mysqlpp::ReadDefaultGroup-
Option:

5.50.1 Detailed Description

Override use of my.cnf.

The documentation for this class was generated from the
following file:

• options.h

Generated on Fri Feb 29 16:26:00 2008 for MySQL++ by Doxygen

158 MySQL++ Class Documentation

5.51 mysqlpp::ReadTimeoutOption Class Reference

Set (p.190) timeout for IPC data reads.

#include <options.h>

Inheritance diagram for mysqlpp::ReadTimeoutOption:

Collaboration diagram for mysqlpp::ReadTimeoutOption:

5.51.1 Detailed Description

Set (p.190) timeout for IPC data reads.

The documentation for this class was generated from the
following file:

• options.h

Generated on Fri Feb 29 16:26:00 2008 for MySQL++ by Doxygen

5.52 mysqlpp::ReconnectOption Class Reference 159

5.52 mysqlpp::ReconnectOption Class Reference

Enable automatic reconnection to server.

#include <options.h>

Inheritance diagram for mysqlpp::ReconnectOption:

Collaboration diagram for mysqlpp::ReconnectOption:

5.52.1 Detailed Description

Enable automatic reconnection to server.

The documentation for this class was generated from the
following file:

• options.h

Generated on Fri Feb 29 16:26:00 2008 for MySQL++ by Doxygen

160 MySQL++ Class Documentation

5.53 mysqlpp::RefCountedPointer< T, Destroyer >
Class Template Reference

Creates an object that acts as a reference-counted
pointer to another object.

#include <refcounted.h>

Inheritance diagram for mysqlpp::RefCountedPointer< T,
Destroyer >:

Collaboration diagram for mysqlpp::RefCountedPointer< T,
Destroyer >:

Public Types

• typedef RefCountedPointer< T > ThisType
alias for this object’s type

Public Member Functions

• RefCountedPointer ()
Default constructor.

• RefCountedPointer (T ∗c)
Standard constructor.

• RefCountedPointer (const ThisType &other)
Copy constructor.

Generated on Fri Feb 29 16:26:00 2008 for MySQL++ by Doxygen

5.53 mysqlpp::RefCountedPointer< T, Destroyer > Class Template Reference161

• ∼RefCountedPointer ()

Destructor.

• ThisType & assign (T ∗c)

Sets (or resets) the pointer to the counted object.

• ThisType & assign (const ThisType &other)

Copy an existing refcounted pointer.

• ThisType & operator= (T ∗c)

Set (p. 190) (or reset) the pointer to the counted object.

• ThisType & operator= (const ThisType &rhs)

Copy an existing refcounted pointer.

• T ∗ operator → () const

Access the object through the smart pointer.

• T & operator ∗ () const

Dereference the smart pointer.

• operator void ∗ ()

Returns the internal raw pointer converted to void∗.

• operator const void ∗ () const

Returns the internal raw pointer converted to const void∗.

• T ∗ raw ()

Return the raw pointer in T∗ context.

• const T ∗ raw () const

Return the raw pointer when used in const T∗ context.

• void swap (ThisType &other)

Exchange our managed memory with another pointer.

Generated on Fri Feb 29 16:26:00 2008 for MySQL++ by Doxygen

162 MySQL++ Class Documentation

5.53.1 Detailed Description

template<class T, class Destroyer = RefCountedPointerDestroyer<T>> class
mysqlpp::RefCountedPointer< T, Destroyer >

Creates an object that acts as a reference-counted
pointer to another object.

Resulting type acts like a pointer in all respects,
except that it manages the memory it points to by
observing how many users there are for the object.

This attempts to be as automatic as reference counting in
a programming language with memory management. Like all
automatic memory management schemes, it has penalties:
it turns the single indirection of an unmanaged pointer
into a double indirection, and has additional management
overhead in the assignment operators due to the reference
counter. This is an acceptable tradeoff when wrapping
objects that are expensive to copy, and which need to
be "owned" by disparate parties: you can allocate the
object just once, then pass around the reference counted
pointer, knowing that the last user will "turn out the
lights".

Implementation detail: You may notice that this class manages
two pointers, one to the data we’re managing, and one
to the reference count. You might wonder why we don’t
wrap these up into a structure and keep just a pointer
to an instance of it to simplify the memory management.
It would indeed do that, but then every access to the
data we manage would be a triple indirection instead of
just double. It’s a tradeoff, and we’ve chosen to take a
minor complexity hit to avoid the performance hit.

5.53.2 Constructor & Destructor Documentation

5.53.2.1 template<class T, class Destroyer = RefCountedPointer-
Destroyer<T>> mysqlpp::RefCountedPointer< T, Destroyer
>::RefCountedPointer () [inline]

Default constructor.

An object constructed this way is useless until you
vivify it with operator =() (p.165) or assign() (p.163).

Generated on Fri Feb 29 16:26:00 2008 for MySQL++ by Doxygen

5.53 mysqlpp::RefCountedPointer< T, Destroyer > Class Template Reference163

5.53.2.2 template<class T, class Destroyer = RefCountedPointer-
Destroyer<T>> mysqlpp::RefCountedPointer< T, Destroyer
>::RefCountedPointer (T ∗ c) [inline, explicit]

Standard constructor.

Parameters:

c A pointer to the object to be managed. If you pass
0, it’s like calling the default ctor instead,
only more work: the object’s useless until you
vivify it with operator =() (p.165) or assign()
(p.163).

5.53.2.3 template<class T, class Destroyer = RefCountedPointer-
Destroyer<T>> mysqlpp::RefCountedPointer< T, Destroyer
>::∼RefCountedPointer () [inline]

Destructor.

This only destroys the managed memory if the reference
count drops to 0.

5.53.3 Member Function Documentation

5.53.3.1 template<class T, class Destroyer = RefCountedPointer-
Destroyer<T>> ThisType& mysqlpp::RefCountedPointer< T,
Destroyer >::assign (const ThisType & other) [inline]

Copy an existing refcounted pointer.

If we are managing a pointer, this decrements the
refcount for it and destroys the managed object if
the refcount falls to 0. Then we increment the other
object’s reference count and copy that refcount and the
managed pointer into this object.

This is a no-op if you pass a reference to this same
object.

5.53.3.2 template<class T, class Destroyer = RefCountedPointer-
Destroyer<T>> ThisType& mysqlpp::RefCountedPointer< T,
Destroyer >::assign (T ∗ c) [inline]

Sets (or resets) the pointer to the counted object.

Generated on Fri Feb 29 16:26:00 2008 for MySQL++ by Doxygen

164 MySQL++ Class Documentation

If we are managing a pointer, this decrements the
refcount for it and destroys the managed object if the
refcount falls to 0.

This is a no-op if you pass the same pointer we’re
already managing.

5.53.3.3 template<class T, class Destroyer = RefCountedPointer-
Destroyer<T>> mysqlpp::RefCountedPointer< T, Destroyer
>::operator const void ∗ () const [inline]

Returns the internal raw pointer converted to const
void∗.

See also:

comments for operator void∗() (p.164)

5.53.3.4 template<class T, class Destroyer = RefCountedPointer-
Destroyer<T>> mysqlpp::RefCountedPointer< T, Destroyer
>::operator void ∗ () [inline]

Returns the internal raw pointer converted to void∗.

This isn’t intended to be used directly; if you need
the pointer, call raw() (p.161) instead. It’s used
internally by the compiler to implement operators bool,
==, and !=

WARNING: This makes it possible to say

///

This will almost kinda sorta do the right thing: the Foo
object held by the refcounted pointer will be destroyed
as you wanted, but then when the refcounted pointer
goes out of scope, the memory is deleted a second time,
which will probably crash your program. This is easy
to accidentally do when converting a good ol’ unmanaged
pointer to a refcounted pointer and forgetting to remove
the delete calls needed previously.

Generated on Fri Feb 29 16:26:00 2008 for MySQL++ by Doxygen

5.53 mysqlpp::RefCountedPointer< T, Destroyer > Class Template Reference165

5.53.3.5 template<class T, class Destroyer = RefCountedPointer-
Destroyer<T>> ThisType& mysqlpp::RefCountedPointer< T,
Destroyer >::operator= (const ThisType & rhs) [inline]

Copy an existing refcounted pointer.

This is essentially the same thing as assign(const This-
Type&) (p.163). The choice between the two is just a
matter of syntactic preference.

5.53.3.6 template<class T, class Destroyer = RefCountedPointer-
Destroyer<T>> ThisType& mysqlpp::RefCountedPointer< T,
Destroyer >::operator= (T ∗ c) [inline]

Set (p.190) (or reset) the pointer to the counted object.

This is essentially the same thing as assign(T∗) (p.163).
The choice between the two is just a matter of syntactic
preference.

The documentation for this class was generated from the
following file:

• refcounted.h

Generated on Fri Feb 29 16:26:00 2008 for MySQL++ by Doxygen

166 MySQL++ Class Documentation

5.54 mysqlpp::RefCountedPointerDestroyer< T >
Struct Template Reference

Functor to call delete on the pointer you pass to it.

#include <refcounted.h>

Public Member Functions

• void operator() (T ∗doomed) const
Functor implementation.

5.54.1 Detailed Description

template<class T> struct mysqlpp::RefCountedPointerDestroyer< T >

Functor to call delete on the pointer you pass to it.

The default "destroyer" for RefCountedPointer (p.160).
You won’t use this directly, you’ll pass a functor of
your own devising for the second parameter to the Ref-
CountedPointer (p.160) template to override this. Or
simpler, just specialize this template for your type if
possible: see ResUse::result_.

The documentation for this struct was generated from the
following file:

• refcounted.h

Generated on Fri Feb 29 16:26:00 2008 for MySQL++ by Doxygen

5.55 mysqlpp::RefCountedPointerDestroyer< MYSQL_RES > Struct Template
Reference 167

5.55 mysqlpp::RefCountedPointerDestroyer<
MYSQL_RES > Struct Template Reference

Functor to call mysql_free_result() on the pointer you
pass to it.

#include <result.h>

Public Member Functions

• void operator() (MYSQL_RES ∗doomed) const
Functor implementation.

5.55.1 Detailed Description

template<> struct mysqlpp::RefCountedPointerDestroyer< MYSQL_RES >

Functor to call mysql_free_result() on the pointer you
pass to it.

This overrides RefCountedPointer’s default destroyer,
which uses operator delete; it annoys the C API when you
nuke its data structures this way. :)

The documentation for this struct was generated from the
following file:

• result.h

Generated on Fri Feb 29 16:26:00 2008 for MySQL++ by Doxygen

168 MySQL++ Class Documentation

5.56 mysqlpp::ReportDataTruncationOption Class
Reference

Set (p.190) reporting of data truncation errors.

#include <options.h>

Inheritance diagram for mysqlpp::ReportDataTruncation-
Option:

Collaboration diagram for mysqlpp::ReportDataTruncation-
Option:

5.56.1 Detailed Description

Set (p.190) reporting of data truncation errors.

The documentation for this class was generated from the
following file:

• options.h

Generated on Fri Feb 29 16:26:00 2008 for MySQL++ by Doxygen

5.57 mysqlpp::ResultBase Class Reference 169

5.57 mysqlpp::ResultBase Class Reference

Base class for StoreQueryResult (p.217) and UseQuery-
Result (p.254).

#include <result.h>

Inheritance diagram for mysqlpp::ResultBase:

Collaboration diagram for mysqlpp::ResultBase:

Public Member Functions

• virtual ∼ResultBase ()
Destroy object.

• const Field & fetch_field () const
Returns the next field in this result set.

• const Field & fetch_field (Fields::size_type i) const
Returns the given field in this result set.

• const Field & field (unsigned int i) const
Get the underlying Field (p. 89) structure given its index.

• const Fields & fields () const
Get the underlying Fields structure.

• const std::string & field_name (int i) const

Generated on Fri Feb 29 16:26:00 2008 for MySQL++ by Doxygen

170 MySQL++ Class Documentation

Get the name of the field at the given index.

• const RefCountedPointer< FieldNames > & field_names () const
Get the names of the fields within this result set.

• int field_num (const std::string &) const
Get the index of the named field.

• const FieldTypes::value_type & field_type (int i) const
Get the type of a particular field within this result set.

• const RefCountedPointer< FieldTypes > & field_types () const
Get a list of the types of the fields within this result set.

• size_t num_fields () const
Returns the number of fields in this result set.

• const char ∗ table () const
Return the name of the table the result set comes from.

Protected Member Functions

• ResultBase ()
Create empty object.

• ResultBase (MYSQL_RES ∗result, DBDriver ∗dbd, bool te=true)
Create the object, fully initialized.

• ResultBase (const ResultBase &other)
Create object as a copy of another ResultBase (p. 169).

• ResultBase & copy (const ResultBase &other)
Copy another ResultBase (p. 169) object’s contents into this one.

Protected Attributes

• DBDriver ∗ driver_
Access to DB driver; fully initted if nonzero.

• Fields fields_

Generated on Fri Feb 29 16:26:00 2008 for MySQL++ by Doxygen

5.57 mysqlpp::ResultBase Class Reference 171

list of fields in result

• RefCountedPointer< FieldNames > names_
list of field names in result

• RefCountedPointer< FieldTypes > types_
list of field types in result

• Fields::size_type current_field_
Default field index used by fetch_field() (p. 169).

5.57.1 Detailed Description

Base class for StoreQueryResult (p.217) and UseQuery-
Result (p.254).

Not useful directly. Just contains common functionality
for its subclasses.

5.57.2 Member Function Documentation

5.57.2.1 int mysqlpp::ResultBase::field_num (const std::string &) const

Get the index of the named field.

This is the inverse of field_name() (p.169).

5.57.3 Member Data Documentation

5.57.3.1 Fields::size_type mysqlpp::ResultBase::current_field_ [mutable,
protected]

Default field index used by fetch_field() (p.169).

It’s mutable because it’s just internal housekeeping:
it’s changed by fetch_field(void) (p.169), but it doesn’t
change the "value" of the result. See mutability
justification for UseQueryResult::result_: this field
provides functionality we used to get through result_, so
it’s relevant here, too.

The documentation for this class was generated from the
following files:

Generated on Fri Feb 29 16:26:00 2008 for MySQL++ by Doxygen

172 MySQL++ Class Documentation

• result.h
• result.cpp

Generated on Fri Feb 29 16:26:00 2008 for MySQL++ by Doxygen

5.58 mysqlpp::Row Class Reference 173

5.58 mysqlpp::Row Class Reference

Manages rows from a result set.

#include <row.h>

Inheritance diagram for mysqlpp::Row:

Collaboration diagram for mysqlpp::Row:

Public Types

• typedef std::vector< String > list_type
type of our internal data list

• typedef list_type::const_iterator const_iterator
constant iterator type

• typedef list_type::const_reference const_reference
constant reference type

• typedef list_type::const_reverse_iterator const_reverse_iterator
const reverse iterator type

• typedef list_type::difference_type difference_type
type for index differences

• typedef const_iterator iterator
iterator type

• typedef const_reference reference

Generated on Fri Feb 29 16:26:00 2008 for MySQL++ by Doxygen

174 MySQL++ Class Documentation

reference type

• typedef const_reverse_iterator reverse_iterator
mutable reverse iterator type

• typedef list_type::size_type size_type
type of returned sizes

• typedef list_type::value_type value_type
type of data in container

Public Member Functions

• Row ()
Default constructor.

• Row (const Row &r)
Copy constructor.

• Row (MYSQL_ROW row, const ResultBase ∗res, const unsigned long
∗lengths, bool te=true)

Create a row object.

• ∼Row ()
Destroy object.

• const_reference at (size_type i) const
Get a const reference to the field given its index.

• const_reference back () const
Get a reference to the last element of the vector.

• const_iterator begin () const
Return a const iterator pointing to first element in the container.

• bool empty () const
Returns true if container is empty.

• const_iterator end () const
Return a const iterator pointing to one past the last element in the container.

Generated on Fri Feb 29 16:26:00 2008 for MySQL++ by Doxygen

5.58 mysqlpp::Row Class Reference 175

• equal_list_ba< FieldNames, Row, quote_type0 > equal_list (const char
∗d=",", const char ∗e=" = ") const

Get an "equal list" of the fields and values in this row.

• template<class Manip> equal_list_ba< FieldNames, Row, Manip >
equal_list (const char ∗d, const char ∗e, Manip m) const

Get an "equal list" of the fields and values in this row.

• value_list_ba< FieldNames, do_nothing_type0 > field_list (const char
∗d=",") const

Get a list of the field names in this row.

• template<class Manip> value_list_ba< FieldNames, Manip > field_list
(const char ∗d, Manip m) const

Get a list of the field names in this row.

• template<class Manip> value_list_b< FieldNames, Manip > field_list
(const char ∗d, Manip m, const std::vector< bool > &vb) const

Get a list of the field names in this row.

• value_list_b< FieldNames, quote_type0 > field_list (const char ∗d, const
std::vector< bool > &vb) const

Get a list of the field names in this row.

• value_list_b< FieldNames, quote_type0 > field_list (const std::vector< bool
> &vb) const

Get a list of the field names in this row.

• template<class Manip> value_list_b< FieldNames, Manip > field_list
(const char ∗d, Manip m, bool t0, bool t1=false, bool t2=false, bool t3=false,
bool t4=false, bool t5=false, bool t6=false, bool t7=false, bool t8=false, bool
t9=false, bool ta=false, bool tb=false, bool tc=false) const

Get a list of the field names in this row.

• value_list_b< FieldNames, quote_type0 > field_list (const char ∗d, bool
t0, bool t1=false, bool t2=false, bool t3=false, bool t4=false, bool t5=false,
bool t6=false, bool t7=false, bool t8=false, bool t9=false, bool ta=false, bool
tb=false, bool tc=false) const

Get a list of the field names in this row.

• value_list_b< FieldNames, quote_type0 > field_list (bool t0, bool t1=false,
bool t2=false, bool t3=false, bool t4=false, bool t5=false, bool t6=false, bool
t7=false, bool t8=false, bool t9=false, bool ta=false, bool tb=false, bool
tc=false) const

Generated on Fri Feb 29 16:26:00 2008 for MySQL++ by Doxygen

176 MySQL++ Class Documentation

Get a list of the field names in this row.

• size_type field_num (const char ∗name) const
Returns a field’s index given its name.

• const_reference front () const
Get a reference to the first element of the vector.

• size_type max_size () const
Return maximum number of elements that can be stored in container without re-
sizing.

• Row & operator= (const Row &rhs)
Assignment operator.

• const_reference operator[] (const char ∗field) const
Get the value of a field given its name.

• const_reference operator[] (int i) const
Get the value of a field given its index.

• operator private_bool_type () const
Returns true if row object was fully initialized and has data.

• const_reverse_iterator rbegin () const
Return reverse iterator pointing to first element in the container.

• const_reverse_iterator rend () const
Return reverse iterator pointing to one past the last element in the container.

• size_type size () const
Get the number of fields in the row.

• template<class Manip> value_list_ba< Row, Manip > value_list (const
char ∗d=",", Manip m=quote) const

Get a list of the values in this row.

• template<class Manip> value_list_b< Row, Manip > value_list (const char
∗d, const std::vector< bool > &vb, Manip m=quote) const

Get a list of the values in this row.

• value_list_b< Row, quote_type0 > value_list (const std::vector< bool >
&vb) const

Generated on Fri Feb 29 16:26:00 2008 for MySQL++ by Doxygen

5.58 mysqlpp::Row Class Reference 177

Get a list of the values in this row.

• template<class Manip> value_list_b< Row, Manip > value_list (const char
∗d, Manip m, bool t0, bool t1=false, bool t2=false, bool t3=false, bool
t4=false, bool t5=false, bool t6=false, bool t7=false, bool t8=false, bool
t9=false, bool ta=false, bool tb=false, bool tc=false) const

Get a list of the values in this row.

• value_list_b< Row, quote_type0 > value_list (const char ∗d, bool t0, bool
t1=false, bool t2=false, bool t3=false, bool t4=false, bool t5=false, bool
t6=false, bool t7=false, bool t8=false, bool t9=false, bool ta=false, bool
tb=false, bool tc=false) const

Get a list of the values in this row.

• value_list_b< Row, quote_type0 > value_list (bool t0, bool t1=false, bool
t2=false, bool t3=false, bool t4=false, bool t5=false, bool t6=false, bool
t7=false, bool t8=false, bool t9=false, bool ta=false, bool tb=false, bool
tc=false) const

Get a list of the values in this row.

• template<class Manip> value_list_b< Row, Manip > value_list (const char
∗d, Manip m, std::string s0, std::string s1="", std::string s2="", std::string
s3="", std::string s4="", std::string s5="", std::string s6="", std::string
s7="", std::string s8="", std::string s9="", std::string sa="", std::string
sb="", std::string sc="") const

Get a list of the values in this row.

• value_list_b< Row, quote_type0 > value_list (const char ∗d, std::string s0,
std::string s1="", std::string s2="", std::string s3="", std::string s4="",
std::string s5="", std::string s6="", std::string s7="", std::string s8="",
std::string s9="", std::string sa="", std::string sb="", std::string sc="")
const

Get a list of the values in this row.

• value_list_b< Row, quote_type0 > value_list (std::string s0, std::string
s1="", std::string s2="", std::string s3="", std::string s4="", std::string
s5="", std::string s6="", std::string s7="", std::string s8="", std::string
s9="", std::string sa="", std::string sb="", std::string sc="") const

Get a list of the values in this row.

5.58.1 Detailed Description

Manages rows from a result set.

Generated on Fri Feb 29 16:26:00 2008 for MySQL++ by Doxygen

178 MySQL++ Class Documentation

This class is like an extended version of a const
std::vector of mysqlpp::String (p.220). It adds stuff
for populating the vector. As for why it’s const, what
would it mean to modify a Row (p.173)? If we ever did
support such semantics, it should probably actually
modify the database. We can’t do that if we just derive
from std::vector.

Not that we could derive from std::vector even if we
wanted to: vector::operator[](size_type) would interfere
with our operator[](const char∗). We can avoid this only
by maintaining our own public inteface independent of
that of vector.

5.58.2 Member Typedef Documentation

5.58.2.1 typedef const_iterator mysqlpp::Row::iterator

iterator type

Note that this is just an alias for the const iterator.
Row (p.173) is immutable, but people are in the habit of
saying ’iterator’ even when they don’t intend to use the
iterator to modify the container, so we provide this as a
convenience.

5.58.2.2 typedef std::vector<String> mysqlpp::Row::list_type

type of our internal data list

This is public because all other typedefs we have for
mirroring std::vector’s public interface depend on it.

5.58.2.3 typedef const_reference mysqlpp::Row::reference

reference type

See also:

iterator (p.178) for justification for this const_-
reference (p.173) alias

5.58.2.4 typedef const_reverse_iterator mysqlpp::Row::reverse_iterator

mutable reverse iterator type

Generated on Fri Feb 29 16:26:00 2008 for MySQL++ by Doxygen

5.58 mysqlpp::Row Class Reference 179

See also:

iterator (p.178) for justification for this const_-
reverse_iterator (p.173) alias

5.58.3 Constructor & Destructor Documentation

5.58.3.1 mysqlpp::Row::Row (MYSQL_ROW row, const ResultBase ∗ res,
const unsigned long ∗ lengths, bool te = true)

Create a row object.

Parameters:

row MySQL C API row data

res result set that the row comes from

lengths length of each item in row

te if true, throw exceptions on errors

5.58.4 Member Function Documentation

5.58.4.1 const_reference mysqlpp::Row::at (size_type i) const [inline]

Get a const reference to the field given its index.

If the index value is bad, the underlying std::vector
is supposed to throw an exception, according to the
Standard.

5.58.4.2 template<class Manip> equal_list_ba< FieldNames, Row, Manip >
mysqlpp::Row::equal_list (const char ∗ d, const char ∗ e, Manip m)
const

Get an "equal list" of the fields and values in this row.

This method’s parameters govern how the returned list
will behave when you insert it into a C++ stream:

Parameters:

d delimiter to use between items

e the operator to use between elements

m the manipulator to use for each element

Generated on Fri Feb 29 16:26:00 2008 for MySQL++ by Doxygen

180 MySQL++ Class Documentation

For example, if d is ",", e is " = ", and m is the quote
manipulator, then the field and value lists (a, b) (c,
d’e) will yield an equal list that gives the following
when inserted into a C++ stream:

///

Notice how the single quote was ’escaped’ in the SQL way
to avoid a syntax error.

5.58.4.3 equal_list_ba< FieldNames, Row, quote_type0 >
mysqlpp::Row::equal_list (const char ∗ d = ",", const char ∗ e =
" = ") const

Get an "equal list" of the fields and values in this row.

When inserted into a C++ stream, the delimiter ’d’ will
be used between the items, " = " is the relationship
operator, and items will be quoted and escaped.

5.58.4.4 value_list_b< FieldNames, quote_type0 > mysqlpp::Row::field_list
(bool t0, bool t1 = false, bool t2 = false, bool t3 = false, bool t4 =
false, bool t5 = false, bool t6 = false, bool t7 = false, bool t8 =
false, bool t9 = false, bool ta = false, bool tb = false, bool tc =
false) const

Get a list of the field names in this row.

For each true parameter, the field name in that position
within the row is added to the returned list. When the
list is inserted into a C++ stream, a comma will be
placed between the items as a delimiter, and the items
will be quoted and escaped.

5.58.4.5 value_list_b< FieldNames, quote_type0 > mysqlpp::Row::field_list
(const char ∗ d, bool t0, bool t1 = false, bool t2 = false, bool t3 =
false, bool t4 = false, bool t5 = false, bool t6 = false, bool t7 =
false, bool t8 = false, bool t9 = false, bool ta = false, bool tb =
false, bool tc = false) const

Get a list of the field names in this row.

For each true parameter, the field name in that position
within the row is added to the returned list. When the
list is inserted into a C++ stream, the delimiter ’d’

Generated on Fri Feb 29 16:26:00 2008 for MySQL++ by Doxygen

5.58 mysqlpp::Row Class Reference 181

will be placed between the items as a delimiter, and the
items will be quoted and escaped.

5.58.4.6 template<class Manip> value_list_b< FieldNames, Manip >
mysqlpp::Row::field_list (const char ∗ d, Manip m, bool t0, bool t1 =
false, bool t2 = false, bool t3 = false, bool t4 = false, bool t5 =
false, bool t6 = false, bool t7 = false, bool t8 = false, bool t9 =
false, bool ta = false, bool tb = false, bool tc = false) const

Get a list of the field names in this row.

For each true parameter, the field name in that position
within the row is added to the returned list. When the
list is inserted into a C++ stream, the delimiter ’d’
will be placed between the items as a delimiter, and the
manipulator ’m’ used before each item.

5.58.4.7 value_list_b< FieldNames, quote_type0 > mysqlpp::Row::field_list
(const std::vector< bool > & vb) const

Get a list of the field names in this row.

Parameters:

vb for each true item in this list, add that field
name to the returned list; ignore the others

Field (p.89) names will be quoted and escaped when
inserted into a C++ stream, and a comma will be placed
between them as a delimiter.

5.58.4.8 value_list_b< FieldNames, quote_type0 > mysqlpp::Row::field_list
(const char ∗ d, const std::vector< bool > & vb) const

Get a list of the field names in this row.

Parameters:

d delimiter to place between the items when the list
is inserted into a C++ stream

vb for each true item in this list, add that field
name to the returned list; ignore the others

Field (p.89) names will be quoted and escaped when
inserted into a C++ stream.

Generated on Fri Feb 29 16:26:00 2008 for MySQL++ by Doxygen

182 MySQL++ Class Documentation

5.58.4.9 template<class Manip> value_list_b< FieldNames, Manip >
mysqlpp::Row::field_list (const char ∗ d, Manip m, const std::vector<
bool > & vb) const

Get a list of the field names in this row.

Parameters:

d delimiter to place between the items when the list
is inserted into a C++ stream

m manipulator to use before each item when the list
is inserted into a C++ stream

vb for each true item in this list, add that field
name to the returned list; ignore the others

5.58.4.10 template<class Manip> value_list_ba< FieldNames, Manip >
mysqlpp::Row::field_list (const char ∗ d, Manip m) const

Get a list of the field names in this row.

Parameters:

d delimiter to place between the items when the list
is inserted into a C++ stream

m manipulator to use before each item when the list
is inserted into a C++ stream

5.58.4.11 value_list_ba< FieldNames, do_nothing_type0 >
mysqlpp::Row::field_list (const char ∗ d = ",") const

Get a list of the field names in this row.

When inserted into a C++ stream, the delimiter ’d’ will
be used between the items, and no manipulator will be
used on the items.

5.58.4.12 mysqlpp::Row::operator private_bool_type () const [inline]

Returns true if row object was fully initialized and has
data.

This operator lets you use Row (p.173) in bool context,
which lets you do things like tell when you’ve run off
the end of a "use" query’s result set:

Generated on Fri Feb 29 16:26:00 2008 for MySQL++ by Doxygen

5.58 mysqlpp::Row Class Reference 183

///

5.58.4.13 const_reference mysqlpp::Row::operator[] (int i) const [inline]

Get the value of a field given its index.

This function is just syntactic sugar, wrapping the at()
(p.179) method.

It’s critical that the parameter type be int, not size_type,
because it will interfere with the const char∗ overload
otherwise. row[0] is ambiguous when there isn’t an int
overload.

5.58.4.14 const Row::value_type & mysqlpp::Row::operator[] (const char ∗
field) const

Get the value of a field given its name.

If the field does not exist in this row, we throw a Bad-
FieldName (p.18) exception.

This operator is fairly inefficient. operator[](int) is
faster.

5.58.4.15 value_list_b<Row, quote_type0> mysqlpp::Row::value_list
(std::string s0, std::string s1 = "", std::string s2 = "", std::string s3
= "", std::string s4 = "", std::string s5 = "", std::string s6 = "",
std::string s7 = "", std::string s8 = "", std::string s9 = "", std::string
sa = "", std::string sb = "", std::string sc = "") const [inline]

Get a list of the values in this row.

The ’s’ parameters name the fields that will be added to
the returned list. When inserted into a C++ stream, a
comma will be placed between the items as a delimiter,
and items will be quoted and escaped.

Generated on Fri Feb 29 16:26:00 2008 for MySQL++ by Doxygen

184 MySQL++ Class Documentation

5.58.4.16 value_list_b<Row, quote_type0> mysqlpp::Row::value_list (const
char ∗ d, std::string s0, std::string s1 = "", std::string s2 = "",
std::string s3 = "", std::string s4 = "", std::string s5 = "", std::string
s6 = "", std::string s7 = "", std::string s8 = "", std::string s9 = "",
std::string sa = "", std::string sb = "", std::string sc = "") const
[inline]

Get a list of the values in this row.

The ’s’ parameters name the fields that will be added to
the returned list. When inserted into a C++ stream, the
delimiter ’d’ will be placed between the items, and items
will be quoted and escaped.

5.58.4.17 template<class Manip> value_list_b<Row, Manip>
mysqlpp::Row::value_list (const char ∗ d, Manip m, std::string s0,
std::string s1 = "", std::string s2 = "", std::string s3 = "", std::string
s4 = "", std::string s5 = "", std::string s6 = "", std::string s7 = "",
std::string s8 = "", std::string s9 = "", std::string sa = "", std::string
sb = "", std::string sc = "") const [inline]

Get a list of the values in this row.

The ’s’ parameters name the fields that will be added to
the returned list. When inserted into a C++ stream, the
delimiter ’d’ will be placed between the items, and the
manipulator ’m’ will be inserted before each item.

5.58.4.18 value_list_b<Row, quote_type0> mysqlpp::Row::value_list (bool t0,
bool t1 = false, bool t2 = false, bool t3 = false, bool t4 = false,
bool t5 = false, bool t6 = false, bool t7 = false, bool t8 = false,
bool t9 = false, bool ta = false, bool tb = false, bool tc = false)
const [inline]

Get a list of the values in this row.

For each true parameter, the value in that position
within the row is added to the returned list. When the
list is inserted into a C++ stream, the a comma will be
placed between the items, as a delimiter, and items will
be quoted and escaped.

Generated on Fri Feb 29 16:26:00 2008 for MySQL++ by Doxygen

5.58 mysqlpp::Row Class Reference 185

5.58.4.19 value_list_b<Row, quote_type0> mysqlpp::Row::value_list (const
char ∗ d, bool t0, bool t1 = false, bool t2 = false, bool t3 = false,
bool t4 = false, bool t5 = false, bool t6 = false, bool t7 = false,
bool t8 = false, bool t9 = false, bool ta = false, bool tb = false,
bool tc = false) const [inline]

Get a list of the values in this row.

For each true parameter, the value in that position
within the row is added to the returned list. When
the list is inserted into a C++ stream, the delimiter
’d’ will be placed between the items, and items will be
quoted and escaped.

5.58.4.20 template<class Manip> value_list_b<Row, Manip>
mysqlpp::Row::value_list (const char ∗ d, Manip m, bool t0, bool t1 =
false, bool t2 = false, bool t3 = false, bool t4 = false, bool t5 =
false, bool t6 = false, bool t7 = false, bool t8 = false, bool t9 =
false, bool ta = false, bool tb = false, bool tc = false) const
[inline]

Get a list of the values in this row.

For each true parameter, the value in that position
within the row is added to the returned list. When the
list is inserted into a C++ stream, the delimiter ’d’
will be placed between the items, and the manipulator ’m’
used before each item.

5.58.4.21 value_list_b<Row, quote_type0> mysqlpp::Row::value_list (const
std::vector< bool > & vb) const [inline]

Get a list of the values in this row.

Parameters:

vb for each true item in this list, add that value to
the returned list; ignore the others

Items will be quoted and escaped when inserted into a C++
stream, and a comma will be used as a delimiter between
the items.

Generated on Fri Feb 29 16:26:00 2008 for MySQL++ by Doxygen

186 MySQL++ Class Documentation

5.58.4.22 template<class Manip> value_list_b<Row, Manip>
mysqlpp::Row::value_list (const char ∗ d, const std::vector< bool >
& vb, Manip m = quote) const [inline]

Get a list of the values in this row.

Parameters:

d delimiter to use between values

vb for each true item in this list, add that value to
the returned list; ignore the others

m manipulator to use when inserting values into a
stream

5.58.4.23 template<class Manip> value_list_ba<Row, Manip>
mysqlpp::Row::value_list (const char ∗ d = ",", Manip m = quote)
const [inline]

Get a list of the values in this row.

When inserted into a C++ stream, the delimiter ’d’ will
be used between the items, and the quoting and escaping
rules will be set by the manipulator ’m’ you choose.

Parameters:

d delimiter to use between values

m manipulator to use when inserting values into a
stream

The documentation for this class was generated from the
following files:

• row.h
• row.cpp

Generated on Fri Feb 29 16:26:00 2008 for MySQL++ by Doxygen

5.59 mysqlpp::ScopedLock Class Reference 187

5.59 mysqlpp::ScopedLock Class Reference

Wrapper around BeecryptMutex (p.27) to add scope-bound
locking and unlocking.

#include <beemutex.h>

Collaboration diagram for mysqlpp::ScopedLock:

Public Member Functions

• ScopedLock (BeecryptMutex &mutex)
Lock the mutex.

• ∼ScopedLock ()
Unlock the mutex.

5.59.1 Detailed Description

Wrapper around BeecryptMutex (p.27) to add scope-bound
locking and unlocking.

This allows code to lock a mutex and ensure it will
unlock on exit from the enclosing scope even in the
face of exceptions. This is separate from Beecrypt-
Mutex (p.27) because we don’t want to make this behavior
mandatory.

The documentation for this class was generated from the
following file:

• beemutex.h

Generated on Fri Feb 29 16:26:00 2008 for MySQL++ by Doxygen

188 MySQL++ Class Documentation

5.60 mysqlpp::SecureAuthOption Class Reference

Enforce use of secure authentication, refusing connection
if not available.

#include <options.h>

Inheritance diagram for mysqlpp::SecureAuthOption:

Collaboration diagram for mysqlpp::SecureAuthOption:

5.60.1 Detailed Description

Enforce use of secure authentication, refusing connection
if not available.

The documentation for this class was generated from the
following file:

• options.h

Generated on Fri Feb 29 16:26:00 2008 for MySQL++ by Doxygen

5.61 mysqlpp::SelfTestFailed Class Reference 189

5.61 mysqlpp::SelfTestFailed Class Reference

Used within MySQL++’s test harness only.

#include <exceptions.h>

Inheritance diagram for mysqlpp::SelfTestFailed:

Collaboration diagram for mysqlpp::SelfTestFailed:

Public Member Functions

• SelfTestFailed (const std::string &w)
Create exception object.

5.61.1 Detailed Description

Used within MySQL++’s test harness only.

The documentation for this class was generated from the
following file:

• exceptions.h

Generated on Fri Feb 29 16:26:00 2008 for MySQL++ by Doxygen

190 MySQL++ Class Documentation

5.62 mysqlpp::Set< Container > Class Template Ref-
erence

A special std::set derivative for holding MySQL data
sets.

#include <myset.h>

Public Member Functions

• Set ()
Default constructor.

• Set (const char ∗str)
Create object from a comma-separated list of values.

• Set (const std::string &str)
Create object from a comma-separated list of values.

• Set (const String &str)
Create object from a comma-separated list of values.

• operator std::string () const
Convert this set’s data to a string containing comma-separated items.

• std::string str () const
Return our value in std::string form.

5.62.1 Detailed Description

template<class Container = std::set<std::string>> class mysqlpp::Set< Con-
tainer >

A special std::set derivative for holding MySQL data
sets.

The documentation for this class was generated from the
following file:

• myset.h

Generated on Fri Feb 29 16:26:00 2008 for MySQL++ by Doxygen

5.63 mysqlpp::SetCharsetDirOption Class Reference 191

5.63 mysqlpp::SetCharsetDirOption Class Reference

Give path to charset definition files.

#include <options.h>

Inheritance diagram for mysqlpp::SetCharsetDirOption:

Collaboration diagram for mysqlpp::SetCharsetDirOption:

5.63.1 Detailed Description

Give path to charset definition files.

The documentation for this class was generated from the
following file:

• options.h

Generated on Fri Feb 29 16:26:00 2008 for MySQL++ by Doxygen

192 MySQL++ Class Documentation

5.64 mysqlpp::SetCharsetNameOption Class Refer-
ence

Give name of default charset.

#include <options.h>

Inheritance diagram for mysqlpp::SetCharsetNameOption:

Collaboration diagram for mysqlpp::SetCharsetNameOption:

5.64.1 Detailed Description

Give name of default charset.

The documentation for this class was generated from the
following file:

• options.h

Generated on Fri Feb 29 16:26:00 2008 for MySQL++ by Doxygen

5.65 mysqlpp::SetClientIpOption Class Reference 193

5.65 mysqlpp::SetClientIpOption Class Reference

Fake client IP address when connecting to embedded
server.

#include <options.h>

Inheritance diagram for mysqlpp::SetClientIpOption:

Collaboration diagram for mysqlpp::SetClientIpOption:

5.65.1 Detailed Description

Fake client IP address when connecting to embedded
server.

The documentation for this class was generated from the
following file:

• options.h

Generated on Fri Feb 29 16:26:00 2008 for MySQL++ by Doxygen

194 MySQL++ Class Documentation

5.66 mysqlpp::SharedMemoryBaseNameOption Class
Reference

Set (p.190) name of shmem segment for IPC.

#include <options.h>

Inheritance diagram for mysqlpp::SharedMemoryBaseName-
Option:

Collaboration diagram for mysqlpp::SharedMemoryBaseName-
Option:

5.66.1 Detailed Description

Set (p.190) name of shmem segment for IPC.

The documentation for this class was generated from the
following file:

• options.h

Generated on Fri Feb 29 16:26:00 2008 for MySQL++ by Doxygen

5.67 mysqlpp::SimpleResult Class Reference 195

5.67 mysqlpp::SimpleResult Class Reference

Holds information about the result of queries that don’t
return rows.

#include <result.h>

Collaboration diagram for mysqlpp::SimpleResult:

Public Member Functions

• SimpleResult ()
Default ctor.

• SimpleResult (bool copacetic, ulonglong insert_id, ulonglong rows, const
std::string &info)

Initialize object.

• operator private_bool_type () const
Test whether the query that created this result succeeded.

• ulonglong insert_id () const
Get the last value used for an AUTO_INCREMENT field.

• ulonglong rows () const
Get the number of rows affected by the query.

• const char ∗ info () const
Get any additional information about the query returned by the server.

5.67.1 Detailed Description

Holds information about the result of queries that don’t
return rows.

Generated on Fri Feb 29 16:26:00 2008 for MySQL++ by Doxygen

196 MySQL++ Class Documentation

5.67.2 Member Function Documentation

5.67.2.1 mysqlpp::SimpleResult::operator private_bool_type () const
[inline]

Test whether the query that created this result
succeeded.

If you test this object in bool context and it’s
false, it’s a signal that the query this was created
from failed in some way. Call Query::error() (p.137)
or Query::errnum() (p.137) to find out what exactly
happened.

The documentation for this class was generated from the
following file:

• result.h

Generated on Fri Feb 29 16:26:00 2008 for MySQL++ by Doxygen

5.68 mysqlpp::SQLBuffer Class Reference 197

5.68 mysqlpp::SQLBuffer Class Reference

Holds SQL data in string form plus type information
for use in converting the string to compatible C++ data
types.

#include <sql_buffer.h>

Collaboration diagram for mysqlpp::SQLBuffer:

Public Types

• typedef unsigned int size_type
Type of length values.

Public Member Functions

• SQLBuffer (const char ∗data, size_type length, mysql_type_info type, bool
is_null)

Initialize object as a copy of a raw data buffer.

• SQLBuffer (const std::string &s, mysql_type_info type, bool is_null)
Initialize object as a copy of a C++ string object.

• ∼SQLBuffer ()
Destructor.

• SQLBuffer & assign (const char ∗data, size_type length, mysql_type_info
type=mysql_type_info::string_type, bool is_null=false)

Replace contents of buffer with copy of given C string.

• SQLBuffer & assign (const std::string &s, mysql_type_info type=mysql_-
type_info::string_type, bool is_null=false)

Replace contents of buffer with copy of given C++ string.

• const char ∗ data () const

Generated on Fri Feb 29 16:26:00 2008 for MySQL++ by Doxygen

198 MySQL++ Class Documentation

Return pointer to raw data buffer.

• bool escape_q () const
Returns true if we were initialized with a data type that must be escaped when used
in a SQL query.

• size_type length () const
Return number of bytes in data buffer.

• bool is_string ()
Returns true if type of buffer’s contents is string.

• bool is_null () const
Return true if buffer’s contents represent a SQL null.

• bool quote_q () const
Returns true if we were initialized with a data type that must be quoted when used
in a SQL query.

• void set_null ()
Sets the internal SQL null flag.

• const mysql_type_info & type () const
Return the SQL type of the data held in the buffer.

5.68.1 Detailed Description

Holds SQL data in string form plus type information
for use in converting the string to compatible C++ data
types.

5.68.2 Constructor & Destructor Documentation

5.68.2.1 mysqlpp::SQLBuffer::SQLBuffer (const char ∗ data, size_type length,
mysql_type_info type, bool is_null) [inline]

Initialize object as a copy of a raw data buffer.

Copies the string into a new buffer one byte longer than
the length value given, using that to hold a C string
null terminator, just for safety. The length value we
keep does not include this extra byte, allowing this same
mechanism to work for both C strings and binary data.

Generated on Fri Feb 29 16:26:00 2008 for MySQL++ by Doxygen

5.68 mysqlpp::SQLBuffer Class Reference 199

5.68.3 Member Function Documentation

5.68.3.1 bool mysqlpp::SQLBuffer::is_null () const [inline]

Return true if buffer’s contents represent a SQL null.

The buffer’s actual content will probably be "NULL" or
something like it, but in the SQL data type system, a SQL
null is distinct from a plain string with value "NULL".

5.68.3.2 size_type mysqlpp::SQLBuffer::length () const [inline]

Return number of bytes in data buffer.

Count does not include the trailing null we tack on
to our copy of the buffer for ease of use in C string
contexts. We do this because we can be holding binary
data just as easily as a C string.

The documentation for this class was generated from the
following files:

• sql_buffer.h
• sql_buffer.cpp

Generated on Fri Feb 29 16:26:00 2008 for MySQL++ by Doxygen

200 MySQL++ Class Documentation

5.69 mysqlpp::SQLParseElement Struct Reference

Used within Query (p.130) to hold elements for
parameterized queries.

#include <qparms.h>

Collaboration diagram for mysqlpp::SQLParseElement:

Public Member Functions

• SQLParseElement (std::string b, char o, signed char n)
Create object.

Public Attributes

• std::string before
string inserted before the parameter

• char option
the parameter option, or blank if none

• signed char num
the parameter position to use

5.69.1 Detailed Description

Used within Query (p.130) to hold elements for
parameterized queries.

Each element has three parts:

The concept behind the before variable needs a little
explaining. When a template query is parsed, each
parameter is parsed into one of these SQLParseElement
(p.200) objects, but the non-parameter parts of the

Generated on Fri Feb 29 16:26:00 2008 for MySQL++ by Doxygen

5.69 mysqlpp::SQLParseElement Struct Reference 201

template also have to be stored somewhere. MySQL++
chooses to attach the text leading up to a parameter to
that parameter. So, the before string is simply the text
copied literally into the finished query before we insert
a value for the parameter.

The option character is currently one of ’q’, ’Q’, ’r’,
’R’ or ’ ’. See the "Template Queries" chapter in the
user manual for details.

The position value (num) allows a template query to
have its parameters in a different order than in the
Query (p.130) method call. An example of how this can
be helpful is in the "Template Queries" chapter of the
user manual.

5.69.2 Constructor & Destructor Documentation

5.69.2.1 mysqlpp::SQLParseElement::SQLParseElement (std::string b, char o,
signed char n) [inline]

Create object.

Parameters:

b the ’before’ value

o the ’option’ value

n the ’num’ value

The documentation for this struct was generated from the
following file:

• qparms.h

Generated on Fri Feb 29 16:26:00 2008 for MySQL++ by Doxygen

202 MySQL++ Class Documentation

5.70 mysqlpp::SQLQueryParms Class Reference

This class holds the parameter values for filling
template queries.

#include <qparms.h>

Collaboration diagram for mysqlpp::SQLQueryParms:

Public Types

• typedef const SQLTypeAdapter & sta
Abbreviation so some of the declarations below don’t span many lines.

Public Member Functions

• SQLQueryParms ()
Default constructor.

• SQLQueryParms (Query ∗p)
Create object.

• bool bound ()
Returns true if we are bound to a query object.

• void clear ()
Clears the list.

• size_t escape_string (std::string ∗ps, const char ∗original=0, size_t length=0)
const

Indirect access to Query::escape_string() (p. 138).

• size_t escape_string (char ∗escaped, const char ∗original, size_t length)
const

Generated on Fri Feb 29 16:26:00 2008 for MySQL++ by Doxygen

5.70 mysqlpp::SQLQueryParms Class Reference 203

Indirect access to Query::escape_string() (p. 138).

• SQLTypeAdapter & operator[] (size_type n)
Access element number n.

• const SQLTypeAdapter & operator[] (size_type n) const
Access element number n.

• SQLTypeAdapter & operator[] (const char ∗str)
Access the value of the element with a key of str.

• const SQLTypeAdapter & operator[] (const char ∗str) const
Access the value of the element with a key of str.

• SQLQueryParms & operator<< (const SQLTypeAdapter &str)
Adds an element to the list.

• SQLQueryParms & operator+= (const SQLTypeAdapter &str)
Adds an element to the list.

• SQLQueryParms operator+ (const SQLQueryParms &other) const
Build a composite of two parameter lists.

• void set (sta a, sta b, sta c, sta d, sta e, sta f, sta g, sta h, sta i, sta j, sta k, sta
l)

Set (p. 190) the template query parameters.

Friends

• class Query

5.70.1 Detailed Description

This class holds the parameter values for filling
template queries.

5.70.2 Constructor & Destructor Documentation

5.70.2.1 mysqlpp::SQLQueryParms::SQLQueryParms (Query ∗ p)
[inline]

Create object.

Generated on Fri Feb 29 16:26:00 2008 for MySQL++ by Doxygen

204 MySQL++ Class Documentation

Parameters:

p pointer to the query object these parameters are
tied to

5.70.3 Member Function Documentation

5.70.3.1 bool mysqlpp::SQLQueryParms::bound () [inline]

Returns true if we are bound to a query object.

Basically, this tells you which of the two ctors were
called.

5.70.3.2 size_t mysqlpp::SQLQueryParms::escape_string (char ∗ escaped,
const char ∗ original, size_t length) const

Indirect access to Query::escape_string() (p.138).

See also:

escape_string(std::string∗, const char∗, size_t)
Query::escape_string(const char∗, const char∗, size_-
t)

5.70.3.3 SQLQueryParms mysqlpp::SQLQueryParms::operator+ (const
SQLQueryParms & other) const

Build a composite of two parameter lists.

If this list is (a, b) and other is (c, d, e, f, g), then
the returned list will be (a, b, e, f, g). That is, all
of this list’s parameters are in the returned list, plus
any from the other list that are in positions beyond what
exist in this list.

If the two lists are the same length or this list is
longer than the other list, a copy of this list is
returned.

5.70.3.4 void mysqlpp::SQLQueryParms::set (sta a, sta b, sta c, sta d, sta e, sta
f, sta g, sta h, sta i, sta j, sta k, sta l) [inline]

Set (p.190) the template query parameters.

Generated on Fri Feb 29 16:26:00 2008 for MySQL++ by Doxygen

5.70 mysqlpp::SQLQueryParms Class Reference 205

Sets parameter 0 to a, parameter 1 to b, etc. There are
overloaded versions of this function that take anywhere
from one to a dozen parameters.

The documentation for this class was generated from the
following files:

• qparms.h
• qparms.cpp

Generated on Fri Feb 29 16:26:00 2008 for MySQL++ by Doxygen

206 MySQL++ Class Documentation

5.71 mysqlpp::SQLTypeAdapter Class Reference

Converts many different data types to strings suitable
for use in SQL queries.

#include <stadapter.h>

Collaboration diagram for mysqlpp::SQLTypeAdapter:

Public Types

• typedef size_t size_type
size of length values

Public Member Functions

• SQLTypeAdapter ()
Default constructor; empty string.

• SQLTypeAdapter (const SQLTypeAdapter &other)
Copy ctor.

• SQLTypeAdapter (const String &str, bool processed=false)
Create a copy of a MySQL++ string.

• SQLTypeAdapter (const std::string &str, bool processed=false)
Create a copy of a C++ string.

• SQLTypeAdapter (const char ∗str, bool processed=false)
Create a copy of a null-terminated C string.

• SQLTypeAdapter (const char ∗str, int len, bool processed=false)
Create a copy of an arbitrary block of data.

Generated on Fri Feb 29 16:26:00 2008 for MySQL++ by Doxygen

5.71 mysqlpp::SQLTypeAdapter Class Reference 207

• SQLTypeAdapter (char c)
Create a single-character string.

• SQLTypeAdapter (sql_tinyint i)
Create a string representation of SQL TINYINT.

• SQLTypeAdapter (sql_tinyint_unsigned i)
Create a string representation of SQL TINYINT UNSIGNED.

• SQLTypeAdapter (short i)
Create a string representation of a short int value.

• SQLTypeAdapter (unsigned short i)
Create a string representation of an unsigned short int value.

• SQLTypeAdapter (int i)
Create a string representation of an int value.

• SQLTypeAdapter (unsigned i)
Create a string representation of an unsigned int value.

• SQLTypeAdapter (long i)
Create a string representation of a long int value.

• SQLTypeAdapter (unsigned long i)
Create a string representation of an unsigned long int value.

• SQLTypeAdapter (longlong i)
Create a string representation of a longlong value.

• SQLTypeAdapter (ulonglong i)
Create a string representation of an unsigned longlong value.

• SQLTypeAdapter (float i)
Create a string representation of a float value.

• SQLTypeAdapter (double i)
Create a string representation of a double value.

• SQLTypeAdapter (const Date &d)
Create a SQL string representation of a date.

Generated on Fri Feb 29 16:26:00 2008 for MySQL++ by Doxygen

208 MySQL++ Class Documentation

• SQLTypeAdapter (const DateTime &dt)
Create a SQL string representation of a date and time.

• SQLTypeAdapter (const Time &t)
Create a SQL string representation of a time.

• SQLTypeAdapter (const null_type &i)
Create object representing SQL NULL.

• SQLTypeAdapter & operator= (const SQLTypeAdapter &rhs)
Standard assignment operator.

• SQLTypeAdapter & operator= (const null_type &n)
Replace contents of object with a SQL null.

• operator const char ∗ () const
Returns a const char pointer to the object’s raw data.

• SQLTypeAdapter & assign (const SQLTypeAdapter &sta)
Copies another SQLTypeAdapter’s data buffer into this object.

• SQLTypeAdapter & assign (const char ∗pc, int len=-1)
Copies a C string or a raw buffer into this object.

• SQLTypeAdapter & assign (const null_type &n)
Replaces contents of object with a SQL null.

• char at (size_type i) const throw (std::out_of_range)
Returns the character at a given position within the string buffer.

• int compare (const SQLTypeAdapter &other) const
Compare the internal buffer to the given string.

• int compare (const std::string &other) const
Compare the internal buffer to the given string.

• int compare (size_type pos, size_type num, std::string &other) const
Compare the internal buffer to the given string.

• int compare (const char ∗other) const
Compare the internal buffer to the given string.

Generated on Fri Feb 29 16:26:00 2008 for MySQL++ by Doxygen

5.71 mysqlpp::SQLTypeAdapter Class Reference 209

• int compare (size_type pos, size_type num, const char ∗other) const
Compare the internal buffer to the given string.

• const char ∗ data () const
Return pointer to raw data buffer.

• bool escape_q () const
Returns true if we were initialized with a data type that must be escaped when used
in a SQL query.

• bool is_processed () const
Returns true if the internal ’processed’ flag is set.

• size_type length () const
Return number of bytes in data buffer.

• size_type size () const
alias for length() (p. 209)

• bool quote_q () const
Returns true if we were initialized with a data type that must be quoted when used
in a SQL query.

• int type_id () const
Returns the type ID of the buffer’s data.

• void set_processed ()
Turns on the internal ’is_processed_’ flag.

5.71.1 Detailed Description

Converts many different data types to strings suitable
for use in SQL queries.

This class provides implicit conversion between many C++
types and SQL-formatted string representations of that
data without losing important type information. This
class is not for direct use outside MySQL++ itself.
It exists for those interfaces in MySQL++ that need to
accept a value of any reasonable data type which it will
use in building a query string.

Generated on Fri Feb 29 16:26:00 2008 for MySQL++ by Doxygen

210 MySQL++ Class Documentation

One major use for this is in the Query (p.130) class
interfaces for building template queries: they have
to be generic with respect to argument type, but
because we know we want the data in some kind of string
form eventually, we don’t need to templatize it. The
interface can just use SQLTypeAdapter (p.206), which
lets callers pass any reasonable data type. The adapter
converts the passed value implicitly.

The other major use for this type is the quoting and
escaping logic in Query’s stream interface: rather
than overload the << operators and the manipulators for
every single type we know the rules for a priori, we just
specialize the manipulators for SQLTypeAdapter (p.206).
The conversion to SQLTypeAdapter (p.206) stringizes the
data, which we needed anyway for stream insertion, and
holds enough type information so that the manipulator can
decide whether to do automatic quoting and/or escaping.

5.71.2 Constructor & Destructor Documentation

5.71.2.1 mysqlpp::SQLTypeAdapter::SQLTypeAdapter (const
SQLTypeAdapter & other)

Copy ctor.

Parameters:

other the other SQLTypeAdapter (p.206) object

This ctor only copies the pointer to the other SQLType-
Adapter’s data buffer and increments its reference
counter. If you need a deep copy, use one of the ctors
that takes a string.

5.71.2.2 mysqlpp::SQLTypeAdapter::SQLTypeAdapter (const String & str,
bool processed = false)

Create a copy of a MySQL++ string.

This does reference-counted buffer sharing with the other
object. If you need a deep copy, pass the result of
either String::c_str() (p.221) or String::conv() (p.221)
instead, which will call one of the other string ctors.

Generated on Fri Feb 29 16:26:00 2008 for MySQL++ by Doxygen

5.71 mysqlpp::SQLTypeAdapter Class Reference 211

5.71.2.3 mysqlpp::SQLTypeAdapter::SQLTypeAdapter (char c)

Create a single-character string.

If you mean for c to be treated as a small integer,
you should be using mysqlpp::tiny_int (p.240) instead.
It avoids the confusion in C++ between integer and
character. See the documentation for tiny_int.h (p.323)
for details.

5.71.3 Member Function Documentation

5.71.3.1 SQLTypeAdapter & mysqlpp::SQLTypeAdapter::assign (const
null_type & n)

Replaces contents of object with a SQL null.

Parameters:

n typically, the MySQL++ global object mysqlpp::null

Return values:

∗this

5.71.3.2 SQLTypeAdapter & mysqlpp::SQLTypeAdapter::assign (const char ∗
pc, int len = -1)

Copies a C string or a raw buffer into this object.

Parameters:

pc Pointer to char buffer to copy

len Number of characters to copy; default tells
function to use the return value of strlen()
instead.

Return values:

∗this If you give the len parameter, this function
will treat pc as a pointer to an array of
char, not as a C string. It only treats null
characters as special when you leave len at its
default.

Generated on Fri Feb 29 16:26:00 2008 for MySQL++ by Doxygen

212 MySQL++ Class Documentation

5.71.3.3 SQLTypeAdapter & mysqlpp::SQLTypeAdapter::assign (const
SQLTypeAdapter & sta)

Copies another SQLTypeAdapter’s data buffer into this
object.

Parameters:

sta Other object to copy

Return values:

∗this Detaches this object from its internal buffer
and attaches itself to the other object’s buffer,
with reference counting on each side. If you
need a deep copy, call one of the assign() (p.212)
overloads taking a C or C++ string instead.

5.71.3.4 char mysqlpp::SQLTypeAdapter::at (size_type i) const throw
(std::out_of_range)

Returns the character at a given position within the
string buffer.

Exceptions:

out_of_range if the internal buffer is not initialized
(default ctor called, and no assignment operator
subsequently) or if there are not at least i + 1
characters in the buffer

5.71.3.5 int mysqlpp::SQLTypeAdapter::compare (size_type pos, size_type
num, const char ∗ other) const

Compare the internal buffer to the given string.

Works just like string::compare(size_type, size_type,
const char∗).

5.71.3.6 int mysqlpp::SQLTypeAdapter::compare (const char ∗ other) const

Compare the internal buffer to the given string.

Works just like string::compare(const char∗).

Generated on Fri Feb 29 16:26:00 2008 for MySQL++ by Doxygen

5.71 mysqlpp::SQLTypeAdapter Class Reference 213

5.71.3.7 int mysqlpp::SQLTypeAdapter::compare (size_type pos, size_type
num, std::string & other) const

Compare the internal buffer to the given string.

Works just like string::compare(size_type, size_type,
std::string&).

5.71.3.8 int mysqlpp::SQLTypeAdapter::compare (const std::string & other)
const

Compare the internal buffer to the given string.

Works just like string::compare(const std::string&).

5.71.3.9 int mysqlpp::SQLTypeAdapter::compare (const SQLTypeAdapter &
other) const

Compare the internal buffer to the given string.

Works just like string::compare(const std::string&).

5.71.3.10 bool mysqlpp::SQLTypeAdapter::is_processed () const [inline]

Returns true if the internal ’processed’ flag is set.

This is an implementation detail of template queries,
used to prevent repeated processing of values.

5.71.3.11 SQLTypeAdapter & mysqlpp::SQLTypeAdapter::operator= (const
null_type & n)

Replace contents of object with a SQL null.

See also:

assign(const null_type&) (p.211) for details

5.71.3.12 SQLTypeAdapter & mysqlpp::SQLTypeAdapter::operator= (const
SQLTypeAdapter & rhs)

Standard assignment operator.

See also:

assign(const SQLTypeAdapter&) (p.212) for details

Generated on Fri Feb 29 16:26:00 2008 for MySQL++ by Doxygen

214 MySQL++ Class Documentation

5.71.3.13 void mysqlpp::SQLTypeAdapter::set_processed () [inline]

Turns on the internal ’is_processed_’ flag.

This is an implementation detail of template queries,
used to prevent repeated processing of values.

5.71.3.14 int mysqlpp::SQLTypeAdapter::type_id () const

Returns the type ID of the buffer’s data.

Values from type_info.h (p.326). At the moment, these
are the same as the underlying MySQL C API type IDs, but
it’s not a good idea to count on this remaining the case.

The documentation for this class was generated from the
following files:

• stadapter.h
• stadapter.cpp

Generated on Fri Feb 29 16:26:00 2008 for MySQL++ by Doxygen

5.72 mysqlpp::SslOption Class Reference 215

5.72 mysqlpp::SslOption Class Reference

Specialized option for handling SSL parameters.

#include <options.h>

Inheritance diagram for mysqlpp::SslOption:

Collaboration diagram for mysqlpp::SslOption:

Public Member Functions

• SslOption (const char ∗key=0, const char ∗cert=0, const char ∗ca=0, const
char ∗capath=0, const char ∗cipher=0)

Create a set of SSL connection option parameters.

5.72.1 Detailed Description

Specialized option for handling SSL parameters.

5.72.2 Constructor & Destructor Documentation

5.72.2.1 mysqlpp::SslOption::SslOption (const char ∗ key = 0, const char ∗ cert
= 0, const char ∗ ca = 0, const char ∗ capath = 0, const char ∗ cipher =
0) [inline]

Create a set of SSL connection option parameters.

Generated on Fri Feb 29 16:26:00 2008 for MySQL++ by Doxygen

216 MySQL++ Class Documentation

This option replaces Connection::enable_ssl() from My-
SQL++ version 2. Now you can set this connection option
just like any other.

The documentation for this class was generated from the
following file:

• options.h

Generated on Fri Feb 29 16:26:00 2008 for MySQL++ by Doxygen

5.73 mysqlpp::StoreQueryResult Class Reference 217

5.73 mysqlpp::StoreQueryResult Class Reference

StoreQueryResult (p.217) set type for "store" queries.

#include <result.h>

Inheritance diagram for mysqlpp::StoreQueryResult:

Collaboration diagram for mysqlpp::StoreQueryResult:

Public Types

• typedef std::vector< Row > list_type
type of vector base class

Public Member Functions

• StoreQueryResult ()
Default constructor.

• StoreQueryResult (MYSQL_RES ∗result, DBDriver ∗dbd, bool te=true)
Fully initialize object.

• StoreQueryResult (const StoreQueryResult &other)
Initialize object as a copy of another StoreQueryResult (p. 217) object.

Generated on Fri Feb 29 16:26:00 2008 for MySQL++ by Doxygen

218 MySQL++ Class Documentation

• ∼StoreQueryResult ()
Destroy result set.

• list_type::size_type num_rows () const
Returns the number of rows in this result set.

• StoreQueryResult & operator= (const StoreQueryResult &rhs)
Copy another StoreQueryResult (p. 217) object’s data into this object.

• operator private_bool_type () const
Test whether the query that created this result succeeded.

5.73.1 Detailed Description

StoreQueryResult (p.217) set type for "store" queries.

This is the obvious C++ implementation of a class to
hold results from a SQL query that returns rows: a
specialization of std::vector holding Row (p.173) objects
in memory so you get random-access semantics. My-
SQL++ also supports UseQueryResult (p.254) which is less
friendly, but has better memory performance. See the
user manual for more details on the distinction and the
usage patterns required.

5.73.2 Member Function Documentation

5.73.2.1 mysqlpp::StoreQueryResult::operator private_bool_type () const
[inline]

Test whether the query that created this result
succeeded.

If you test this object in bool context and it’s
false, it’s a signal that the query this was created
from failed in some way. Call Query::error() (p.137)
or Query::errnum() (p.137) to find out what exactly
happened.

The documentation for this class was generated from the
following files:

• result.h

Generated on Fri Feb 29 16:26:00 2008 for MySQL++ by Doxygen

5.73 mysqlpp::StoreQueryResult Class Reference 219

• result.cpp

Generated on Fri Feb 29 16:26:00 2008 for MySQL++ by Doxygen

220 MySQL++ Class Documentation

5.74 mysqlpp::String Class Reference

A std::string work-alike that can convert itself from SQL
text data formats to C++ data types.

#include <mystring.h>

Collaboration diagram for mysqlpp::String:

Public Types

• typedef const char value_type
Type of the data stored in this object, when it is not equal to SQL null.

• typedef unsigned int size_type
Type of "size" integers.

• typedef const char ∗ const_iterator
Type of iterators.

• typedef const_iterator iterator
Same as const_iterator because the data cannot be changed.

Public Member Functions

• String ()
Default constructor.

• String (const String &other)
Copy ctor.

• String (const char ∗str, size_type len, mysql_type_info type=mysql_type_-
info::string_type, bool is_null=false)

Generated on Fri Feb 29 16:26:00 2008 for MySQL++ by Doxygen

5.74 mysqlpp::String Class Reference 221

Full constructor.

• String (const std::string &str, mysql_type_info type=mysql_type_-
info::string_type, bool is_null=false)

C++ string version of full ctor.

• String (const char ∗str, mysql_type_info type=mysql_type_info::string_-
type, bool is_null=false)

Null-terminated C string version of full ctor.

• ∼String ()
Destroy string.

• void assign (const char ∗str, size_type len, mysql_type_info type=mysql_-
type_info::string_type, bool is_null=false)

Assign raw data to this object.

• void assign (const std::string &str, mysql_type_info type=mysql_type_-
info::string_type, bool is_null=false)

Assign a C++ string to this object.

• void assign (const char ∗str, mysql_type_info type=mysql_type_-
info::string_type, bool is_null=false)

Assign a C string to this object.

• char at (size_type pos) const
Return a character within the string.

• const_iterator begin () const
Return iterator pointing to the first character of the string.

• const char ∗ c_str () const
Return a const pointer to the string data.

• template<class Type> Type conv (Type) const
Template for converting the column data to most any numeric data type.

• template<class T, class B> Null< T, B > conv (Null< T, B >) const
Overload of conv() (p. 221) for types wrapped with Null<>.

• int compare (const String &other) const
Lexically compare this string to another.

Generated on Fri Feb 29 16:26:00 2008 for MySQL++ by Doxygen

222 MySQL++ Class Documentation

• int compare (const std::string &other) const
Lexically compare this string to another.

• int compare (size_type pos, size_type num, std::string &other) const
Lexically compare this string to another.

• int compare (const char ∗other) const
Lexically compare this string to another.

• int compare (size_type pos, size_type num, const char ∗other) const
Lexically compare this string to another.

• const char ∗ data () const
Raw access to the underlying buffer, with no C string interpretation.

• const_iterator end () const
Return iterator pointing to one past the last character of the string.

• bool escape_q () const
Returns true if data of this type should be escaped, false otherwise.

• bool is_null () const
Returns true if this object is a SQL null.

• void it_is_null ()
Set (p. 190) a flag indicating that this object is a SQL null.

• size_type length () const
Return number of characters in the string.

• size_type max_size () const
Return the maximum number of characters in the string.

• bool quote_q () const
Returns true if data of this type should be quoted, false otherwise.

• size_type size () const
Return number of characters in string.

• void strip_leading_blanks (std::string &s) const
Returns a copy of our internal string without leading blanks.

Generated on Fri Feb 29 16:26:00 2008 for MySQL++ by Doxygen

5.74 mysqlpp::String Class Reference 223

• void to_string (std::string &s) const
Copies this object’s data into a C++ string.

• mysql_type_info type () const
Get this object’s current MySQL type.

• String & operator= (const std::string &rhs)
Assignment operator, from C++ string.

• String & operator= (const char ∗str)
Assignment operator, from C string.

• String & operator= (const String &other)
Assignment operator, from other String (p. 220).

• char operator[] (size_type pos) const
Return a character within the string.

• operator const char ∗ () const
Returns a const char pointer to the object’s raw data.

• operator signed char () const
Converts this object’s string data to a signed char.

• operator unsigned char () const
Converts this object’s string data to an unsigned char.

• operator int () const
Converts this object’s string data to an int.

• operator unsigned int () const
Converts this object’s string data to an unsigned int.

• operator short int () const
Converts this object’s string data to a short int.

• operator unsigned short int () const
Converts this object’s string data to an unsigned short int.

• operator long int () const
Converts this object’s string data to a long int.

Generated on Fri Feb 29 16:26:00 2008 for MySQL++ by Doxygen

224 MySQL++ Class Documentation

• operator unsigned long int () const
Converts this object’s string data to an unsigned long int.

• operator longlong () const
Converts this object’s string data to the platform- specific ’longlong’ type, usually a
64-bit integer.

• operator ulonglong () const
Converts this object’s string data to the platform- specific ’ulonglong’ type, usually
a 64-bit unsigned integer.

• operator float () const
Converts this object’s string data to a float.

• operator double () const
Converts this object’s string data to a double.

• operator bool () const
Converts this object’s string data to a bool.

• operator Date () const
Converts this object’s string data to a mysqlpp::Date (p. 54).

• operator DateTime () const
Converts this object’s string data to a mysqlpp::DateTime (p. 58).

• operator Time () const
Converts this object’s string data to a mysqlpp::Time (p. 236).

• template<class T, class B> operator Null () const
Converts the String (p. 220) to a nullable data type.

Friends

• class SQLTypeAdapter

5.74.1 Detailed Description

A std::string work-alike that can convert itself from SQL
text data formats to C++ data types.

Generated on Fri Feb 29 16:26:00 2008 for MySQL++ by Doxygen

5.74 mysqlpp::String Class Reference 225

This class is an intermediate form for a SQL field,
normally converted to a more useful native C++ type,
not used directly. The only exception is in dealing
with BLOB data, which stays in String (p.220) form for
efficiency and to avoid corrupting the data with facile
conversions. Even then, it’s best to use it through the
typedef aliases like sql_blob in sql_types.h (p.318), in
case we later change this underlying representation.

String’s implicit conversion operators let you can use
these objects naturally:

String("12.86") + 2.0

That will give you 14.86 (approximately) as you expect,
but be careful not to get tripped up by C++’s type
conversion rules. If you had said this instead:

String("12.86") + 2

the result would be 14 because 2 is an integer, and C++’s
type conversion rules put the String (p.220) object in an
integer context.

You can disable the operator overloads that allow these
things by defining MYSQLPP_NO_BINARY_OPERS.

This class also has some basic information about the type
of data stored in it, to allow it to do the conversions
more intelligently than a trivial implementation would
allow.

5.74.2 Constructor & Destructor Documentation

5.74.2.1 mysqlpp::String::String () [inline]

Default constructor.

An object constructed this way is essentially useless,
but sometimes you just need to construct a default
object.

5.74.2.2 mysqlpp::String::String (const String & other) [inline]

Copy ctor.

Generated on Fri Feb 29 16:26:00 2008 for MySQL++ by Doxygen

226 MySQL++ Class Documentation

Parameters:

other the other String (p.220) object

This ctor only copies the pointer to the other String’s
data buffer and increments its reference counter. If
you need a deep copy, use one of the ctors that takes a
string.

5.74.2.3 mysqlpp::String::String (const char ∗ str, size_type len,
mysql_type_info type = mysql_type_info::string_type, bool is_null =
false) [inline, explicit]

Full constructor.

Parameters:

str the string this object represents, or 0 for SQL
null

len the length of the string; embedded nulls are legal

type MySQL type information for data within str

is_null string represents a SQL null, not literal data

The resulting object will contain a copy of the string
buffer. The buffer will actually be 1 byte longer than
the value given for len, to hold a null terminator for
safety. We do this because this ctor may be used for
things other than null-terminated C strings. (e.g. BLOB
data)

5.74.2.4 mysqlpp::String::String (const std::string & str, mysql_type_info type
= mysql_type_info::string_type, bool is_null = false) [inline,
explicit]

C++ string version of full ctor.

Parameters:

str the string this object represents, or 0 for SQL
null

type MySQL type information for data within str

is_null string represents a SQL null, not literal data

The resulting object will contain a copy of the string
buffer.

Generated on Fri Feb 29 16:26:00 2008 for MySQL++ by Doxygen

5.74 mysqlpp::String Class Reference 227

5.74.2.5 mysqlpp::String::String (const char ∗ str, mysql_type_info type =
mysql_type_info::string_type, bool is_null = false) [inline,
explicit]

Null-terminated C string version of full ctor.

Parameters:

str the string this object represents, or 0 for SQL
null

type MySQL type information for data within str

is_null string represents a SQL null, not literal data

The resulting object will contain a copy of the string
buffer.

5.74.3 Member Function Documentation

5.74.3.1 void mysqlpp::String::assign (const char ∗ str, mysql_type_info type =
mysql_type_info::string_type, bool is_null = false) [inline]

Assign a C string to this object.

This parallels the ctor with the same parameters, for
when you must do a 2-step create, or when you want to
reassign the data without creating a String (p.220)
temporary to get around the fact that operator=() (p.223)
can only take one parameter.

5.74.3.2 void mysqlpp::String::assign (const std::string & str, mysql_type_info
type = mysql_type_info::string_type, bool is_null = false)
[inline]

Assign a C++ string to this object.

This parallels the ctor with the same parameters, for
when you must do a 2-step create, or when you want to
reassign the data without creating a String (p.220)
temporary to get around the fact that operator=() (p.223)
can only take one parameter.

Generated on Fri Feb 29 16:26:00 2008 for MySQL++ by Doxygen

228 MySQL++ Class Documentation

5.74.3.3 void mysqlpp::String::assign (const char ∗ str, size_type len,
mysql_type_info type = mysql_type_info::string_type, bool is_null =
false) [inline]

Assign raw data to this object.

This parallels the ctor with the same parameters, for
when you must do a 2-step create, or when you want to
reassign the data without creating a String (p.220)
temporary to get around the fact that operator=() (p.223)
can only take one parameter.

5.74.3.4 char mysqlpp::String::at (size_type pos) const

Return a character within the string.

Unlike operator[]() (p.230), this function throws an
std::out_of_range exception if the index isn’t within
range.

5.74.3.5 int mysqlpp::String::compare (size_type pos, size_type num, const
char ∗ other) const

Lexically compare this string to another.

Parameters:

pos position within this string to begin comparison

num maximum number of characters within this string
to use in comparison

other string to compare against this one

Return values:

< 0 if this string is lexically "less than" other

0 if this string is equal to other

> 0 if this string is lexically "greater than" other

5.74.3.6 int mysqlpp::String::compare (const char ∗ other) const

Lexically compare this string to another.

Parameters:

other string to compare against this one

Generated on Fri Feb 29 16:26:00 2008 for MySQL++ by Doxygen

5.74 mysqlpp::String Class Reference 229

See also:

compare(size_type, size_type, const char∗)

5.74.3.7 int mysqlpp::String::compare (size_type pos, size_type num,
std::string & other) const

Lexically compare this string to another.

Parameters:

pos position within this string to begin comparison

num maximum number of characters within this string
to use in comparison

other string to compare against this one

See also:

compare(size_type, size_type, const char∗)

5.74.3.8 int mysqlpp::String::compare (const std::string & other) const

Lexically compare this string to another.

Parameters:

other string to compare against this one

See also:

compare(size_type, size_type, const char∗)

5.74.3.9 int mysqlpp::String::compare (const String & other) const

Lexically compare this string to another.

Parameters:

other string to compare against this one

See also:

compare(size_type, size_type, const char∗)

Generated on Fri Feb 29 16:26:00 2008 for MySQL++ by Doxygen

230 MySQL++ Class Documentation

5.74.3.10 template<class T, class B> Null<T, B> mysqlpp::String::conv
(Null< T, B >) const [inline]

Overload of conv() (p.221) for types wrapped with Null<>.

If the String (p.220) object was initialized with some
string we recognize as a SQL null, we just return a copy
of the global ’null’ object converted to the requested
type. Otherwise, we return the String’s value wrapped in
the Null<> template.

5.74.3.11 size_type mysqlpp::String::max_size () const [inline]

Return the maximum number of characters in the string.

Because this is a const string, this is just an alias for
size() (p.222); its size is always equal to the amount of
data currently stored.

5.74.3.12 template<class T, class B> mysqlpp::String::operator Null () const
[inline]

Converts the String (p.220) to a nullable data type.

This is just an implicit version of conv(Null<T, B>)

5.74.3.13 String& mysqlpp::String::operator= (const String & other)
[inline]

Assignment operator, from other String (p.220).

This only copies the pointer to the other String’s data
buffer and increments its reference counter. If you need
a deep copy, assign a string to this object instead.

5.74.3.14 String& mysqlpp::String::operator= (const char ∗ str) [inline]

Assignment operator, from C string.

This creates a copy of the entire string, not just a copy
of the pointer.

5.74.3.15 char mysqlpp::String::operator[] (size_type pos) const

Return a character within the string.

Generated on Fri Feb 29 16:26:00 2008 for MySQL++ by Doxygen

5.74 mysqlpp::String Class Reference 231

Unlike at() (p.228), this access method doesn’t check the
index for sanity.

5.74.3.16 void mysqlpp::String::to_string (std::string & s) const

Copies this object’s data into a C++ string.

If you know the data doesn’t contain null characters
(i.e. it’s a typical string, not BLOB data), it’s more
efficient to just assign this object to anything taking
const char∗. (Or equivalently, call the data() (p.222)
method.) This copies a pointer to a buffer instead of
copying the buffer’s contents.

The documentation for this class was generated from the
following files:

• mystring.h
• mystring.cpp

Generated on Fri Feb 29 16:26:00 2008 for MySQL++ by Doxygen

232 MySQL++ Class Documentation

5.75 mysqlpp::TCPConnection Class Reference

Specialization of Connection (p.33) for TCP/IP.

#include <tcp_connection.h>

Inheritance diagram for mysqlpp::TCPConnection:

Collaboration diagram for mysqlpp::TCPConnection:

Public Member Functions

• TCPConnection ()
Create object without connecting it to the MySQL server.

• TCPConnection (const char ∗addr, const char ∗db=0, const char ∗user=0,
const char ∗password=0)

Create object and connect to database server over TCP/IP in one step.

• TCPConnection (const TCPConnection &other)
Establish a new connection using the same parameters as an existing connection.

• ∼TCPConnection ()
Destroy object.

• bool connect (const char ∗addr=0, const char ∗db=0, const char ∗user=0,
const char ∗password=0)

Generated on Fri Feb 29 16:26:00 2008 for MySQL++ by Doxygen

5.75 mysqlpp::TCPConnection Class Reference 233

Connect to database after object is created.

Static Public Member Functions

• static bool parse_address (std::string &addr, unsigned int &port,
std::string &error)

Break the given TCP/IP address up into a separate address and port form.

5.75.1 Detailed Description

Specialization of Connection (p.33) for TCP/IP.

This class just simplifies the connection creation
interface of Connection (p.33). It does not add new
functionality.

5.75.2 Constructor & Destructor Documentation

5.75.2.1 mysqlpp::TCPConnection::TCPConnection (const char ∗ addr, const
char ∗ db = 0, const char ∗ user = 0, const char ∗ password = 0)
[inline]

Create object and connect to database server over TCP/IP
in one step.

Parameters:

addr TCP/IP address of server, in either dotted quad
form or as a host or domain name; may be followed
by a colon and a port number or service name to
override default port

db name of database to use

user user name to log in under, or 0 to use the user
name the program is running under

password password to use when logging in

BEWARE: These parameters are not in the same order as
those in the corresponding constructor for Connection
(p.33). This is a feature, not a bug. :)

Generated on Fri Feb 29 16:26:00 2008 for MySQL++ by Doxygen

234 MySQL++ Class Documentation

5.75.2.2 mysqlpp::TCPConnection::TCPConnection (const TCPConnection &
other) [inline]

Establish a new connection using the same parameters as
an existing connection.

Parameters:

other pre-existing connection to clone

5.75.3 Member Function Documentation

5.75.3.1 bool mysqlpp::TCPConnection::connect (const char ∗ addr = 0, const
char ∗ db = 0, const char ∗ user = 0, const char ∗ password = 0)

Connect to database after object is created.

It’s better to use the connect-on-create constructor if
you can. See its documentation for the meaning of these
parameters.

If you call this method on an object that is already
connected to a database server, the previous connection
is dropped and a new connection is established.

5.75.3.2 bool mysqlpp::TCPConnection::parse_address (std::string & addr,
unsigned int & port, std::string & error) [static]

Break the given TCP/IP address up into a separate address
and port form.

Does some sanity checking on the address. Only intended
to try and prevent library misuse, not ensure that the
address can actually be used to contact a server.

It understands the following forms:

• 1.2.3.4

• a.b.com:89

• d.e.fr:mysvcname

It also understands IPv6 addresses, but to avoid
confusion between the colons they use and the colon
separating the address part from the service/port

Generated on Fri Feb 29 16:26:00 2008 for MySQL++ by Doxygen

5.75 mysqlpp::TCPConnection Class Reference 235

part, they must be in RFC 2732 form. Example:
[2010:836B:4179::836B:4179]:1234

Parameters:

addr the address and optional port/service combo
to check on input, and the verified address on
successful return

port the port number (resolved from the service name
if necessary) on successful return

error on false return, reason for failure is placed
here

Returns:

false if address fails to pass sanity checks

The documentation for this class was generated from the
following files:

• tcp_connection.h
• tcp_connection.cpp

Generated on Fri Feb 29 16:26:00 2008 for MySQL++ by Doxygen

236 MySQL++ Class Documentation

5.76 mysqlpp::Time Class Reference

C++ form of SQL’s TIME type.

#include <datetime.h>

Inheritance diagram for mysqlpp::Time:

Collaboration diagram for mysqlpp::Time:

Public Member Functions

• Time ()
Default constructor.

• Time (unsigned char h, unsigned char m, unsigned char s)
Initialize object.

• Time (const Time &other)
Initialize object as a copy of another Time (p. 236).

• Time (const DateTime &other)
Initialize object from time part of date/time object.

• Time (const char ∗str)
Initialize object from a C string containing a SQL time string.

• template<class Str> Time (const Str &str)
Initialize object from a C++ string containing a SQL time string.

• Time (time_t t)

Generated on Fri Feb 29 16:26:00 2008 for MySQL++ by Doxygen

5.76 mysqlpp::Time Class Reference 237

Initialize object from a time_t.

• int compare (const Time &other) const
Compare this time to another.

• const char ∗ convert (const char ∗)
Parse a SQL time string into this object.

• unsigned char hour () const
Get the time’s hour part, 0-23.

• void hour (unsigned char h)
Change the time’s hour part, 0-23.

• unsigned char minute () const
Get the time’s minute part, 0-59.

• void minute (unsigned char m)
Change the time’s minute part, 0-59.

• operator std::string () const
Convert to std::string.

• operator time_t () const
Convert to time_t.

• unsigned char second () const
Get the time’s second part, 0-59.

• void second (unsigned char s)
Change the time’s second part, 0-59.

• std::string str () const
Return our value in std::string form.

5.76.1 Detailed Description

C++ form of SQL’s TIME type.

Objects of this class can be inserted into streams, and
initialized from SQL TIME strings.

Generated on Fri Feb 29 16:26:00 2008 for MySQL++ by Doxygen

238 MySQL++ Class Documentation

5.76.2 Constructor & Destructor Documentation

5.76.2.1 mysqlpp::Time::Time (const char ∗ str) [inline, explicit]

Initialize object from a C string containing a SQL time
string.

String (p.220) must be in the HH:MM:SS format. It
doesn’t have to be zero-padded.

5.76.2.2 template<class Str> mysqlpp::Time::Time (const Str & str)
[inline, explicit]

Initialize object from a C++ string containing a SQL time
string.

This works with any stringish class that declares a c_-
str() member function: std::string, mysqlpp::String
(p.220)...

See also:

Time(const char∗) (p.238)

5.76.2.3 mysqlpp::Time::Time (time_t t) [explicit]

Initialize object from a time_t.

Naturally, we throw away the "date" part of the time_t.
If you need to keep it, you want to use DateTime (p.58)
instead.

5.76.3 Member Function Documentation

5.76.3.1 int mysqlpp::Time::compare (const Time & other) const

Compare this time to another.

Returns < 0 if this time is before the other, 0 of they
are equal, and > 0 if this time is after the other.

5.76.3.2 mysqlpp::Time::operator time_t () const

Convert to time_t.

Generated on Fri Feb 29 16:26:00 2008 for MySQL++ by Doxygen

5.76 mysqlpp::Time Class Reference 239

The "date" part of the time_t is "today"

The documentation for this class was generated from the
following files:

• datetime.h
• datetime.cpp

Generated on Fri Feb 29 16:26:00 2008 for MySQL++ by Doxygen

240 MySQL++ Class Documentation

5.77 mysqlpp::tiny_int< VT > Class Template Refer-
ence

Class for holding an SQL TINYINT value.

#include <tiny_int.h>

Public Types

• typedef tiny_int< VT > this_type
alias for this object’s type

• typedef VT value_type
alias for type of internal value

Public Member Functions

• tiny_int ()
Default constructor.

• tiny_int (value_type v)
Create object from any integral type that can be converted to a short int.

• operator bool () const
Return truthiness of value.

• operator int () const
Return value as an int.

• operator value_type () const
Return raw data value with no size change.

• this_type & operator= (int v)
Assign a new value to the object.

• this_type & operator+= (int v)
Add another value to this object.

• this_type & operator-= (int v)
Subtract another value to this object.

Generated on Fri Feb 29 16:26:00 2008 for MySQL++ by Doxygen

5.77 mysqlpp::tiny_int< VT > Class Template Reference 241

• this_type & operator ∗= (int v)
Multiply this value by another object.

• this_type & operator/= (int v)
Divide this value by another object.

• this_type & operator%= (int v)
Divide this value by another object and store the remainder.

• this_type & operator &= (int v)
Bitwise AND this value by another value.

• this_type & operator|= (int v)
Bitwise OR this value by another value.

• this_type & operator∧= (int v)
Bitwise XOR this value by another value.

• this_type & operator<<= (int v)
Shift this value left by v positions.

• this_type & operator>>= (int v)
Shift this value right by v positions.

• this_type & operator++ ()
Add one to this value and return that value.

• this_type & operator– ()
Subtract one from this value and return that value.

• this_type operator++ (int)
Add one to this value and return the previous value.

• this_type operator– (int)
Subtract one from this value and return the previous value.

• this_type operator- (const this_type &i) const
Return this value minus i.

• this_type operator+ (const this_type &i) const
Return this value plus i.

Generated on Fri Feb 29 16:26:00 2008 for MySQL++ by Doxygen

242 MySQL++ Class Documentation

• this_type operator ∗ (const this_type &i) const
Return this value multiplied by i.

• this_type operator/ (const this_type &i) const
Return this value divided by i.

• this_type operator% (const this_type &i) const
Return the modulus of this value divided by i.

• this_type operator| (const this_type &i) const
Return this value bitwise OR’d by i.

• this_type operator & (const this_type &i) const
Return this value bitwise AND’d by i.

• this_type operator∧ (const this_type &i) const
Return this value bitwise XOR’d by i.

• this_type operator<< (const this_type &i) const
Return this value bitwise shifted left by i.

• this_type operator>> (const this_type &i) const
Return this value bitwise shifted right by i.

5.77.1 Detailed Description

template<typename VT = signed char> class mysqlpp::tiny_int< VT >

Class for holding an SQL TINYINT value.

This is required because the closest C++ type, char,
doesn’t have all the right semantics. For one, inserting
a char into a stream won’t give you a number. For
another, if you don’t specify signedness explicitly, C++
doesn’t give a default, so it’s signed on some platforms,
unsigned on others.

The template parameter is intended to allow instantiating
it as tiny_int<unsigned char> to hold TINYINT UNSIGNED
values. There’s nothing stopping you from using any
other integer type if you want to be perverse, but please
don’t do that.

Generated on Fri Feb 29 16:26:00 2008 for MySQL++ by Doxygen

5.77 mysqlpp::tiny_int< VT > Class Template Reference 243

Several of the functions below accept an int argument,
but internally we store the data as a char by default.
Beware of integer overflows!

5.77.2 Constructor & Destructor Documentation

5.77.2.1 template<typename VT = signed char> mysqlpp::tiny_int< VT
>::tiny_int () [inline]

Default constructor.

Value is uninitialized

The documentation for this class was generated from the
following file:

• tiny_int.h

Generated on Fri Feb 29 16:26:00 2008 for MySQL++ by Doxygen

244 MySQL++ Class Documentation

5.78 mysqlpp::TooOld< ConnInfoT > Class Template
Reference

Functor to test whether a given ConnectionInfo object is
"too old".

5.78.1 Detailed Description

template<typename ConnInfoT> class mysqlpp::TooOld< ConnInfoT >

Functor to test whether a given ConnectionInfo object is
"too old".

The documentation for this class was generated from the
following file:

• cpool.cpp

Generated on Fri Feb 29 16:26:00 2008 for MySQL++ by Doxygen

5.79 mysqlpp::Transaction Class Reference 245

5.79 mysqlpp::Transaction Class Reference

Helper object for creating exception-safe SQL
transactions.

#include <transaction.h>

Collaboration diagram for mysqlpp::Transaction:

Public Member Functions

• Transaction (Connection &conn, bool consistent=false)
Constructor.

• ∼Transaction ()
Destructor.

• void commit ()
Commits the transaction.

• void rollback ()
Rolls back the transaction.

5.79.1 Detailed Description

Helper object for creating exception-safe SQL
transactions.

5.79.2 Constructor & Destructor Documentation

5.79.2.1 Transaction::Transaction (Connection & conn, bool consistent =
false)

Constructor.

Generated on Fri Feb 29 16:26:00 2008 for MySQL++ by Doxygen

246 MySQL++ Class Documentation

Parameters:

conn The connection we use to manage the transaction
set

consistent Whether to use "consistent snapshots" during
the transaction. See the documentation for
"START TRANSACTION" in the MySQL manual for more
on this.

5.79.2.2 Transaction::∼Transaction ()

Destructor.

If the transaction has not been committed or rolled back
by the time the destructor is called, it is rolled back.
This is the right thing because one way this can happen
is if the object is being destroyed as the stack is
unwound to handle an exception. In that instance, you
certainly want to roll back the transaction.

5.79.3 Member Function Documentation

5.79.3.1 void Transaction::commit ()

Commits the transaction.

This commits all updates to the database using the
connection we were created with since this object was
created. This is a no-op if the table isn’t stored using
a transaction-aware storage engine. See CREATE TABLE in
the MySQL manual for details.

5.79.3.2 void Transaction::rollback ()

Rolls back the transaction.

This abandons all SQL statements made on the connection
since this object was created. This only works on tables
stored using a transaction-aware storage engine. See
CREATE TABLE in the MySQL manual for details.

The documentation for this class was generated from the
following files:

• transaction.h
• transaction.cpp

Generated on Fri Feb 29 16:26:00 2008 for MySQL++ by Doxygen

5.80 mysqlpp::TypeLookupFailed Class Reference 247

5.80 mysqlpp::TypeLookupFailed Class Reference

Thrown from the C++ to SQL data type conversion routine
when it can’t figure out how to map the type.

#include <exceptions.h>

Inheritance diagram for mysqlpp::TypeLookupFailed:

Collaboration diagram for mysqlpp::TypeLookupFailed:

Public Member Functions

• TypeLookupFailed (const std::string &w)
Create exception object.

5.80.1 Detailed Description

Thrown from the C++ to SQL data type conversion routine
when it can’t figure out how to map the type.

This exception is not optional. The only alternatives
when this happens are equally drastic: basically, either
iterate past the end of an array (crashing the program)
or call assert() to crash the program nicely. At least
this way you have some control over how your program
ends. You can even ignore the error and keep on going:
this typically happens when building a SQL query, so you

Generated on Fri Feb 29 16:26:00 2008 for MySQL++ by Doxygen

248 MySQL++ Class Documentation

can handle it just the same as if the subsequent query
execution failed.

The documentation for this class was generated from the
following file:

• exceptions.h

Generated on Fri Feb 29 16:26:00 2008 for MySQL++ by Doxygen

5.81 mysqlpp::UnixDomainSocketConnection Class Reference 249

5.81 mysqlpp::UnixDomainSocketConnection Class
Reference

Specialization of Connection (p.33) for Unix domain
sockets.

#include <uds_connection.h>

Inheritance diagram for mysqlpp::UnixDomainSocket-
Connection:

Collaboration diagram for mysqlpp::UnixDomainSocket-
Connection:

Public Member Functions

• UnixDomainSocketConnection ()
Create object without connecting it to the MySQL server.

• UnixDomainSocketConnection (const char ∗path, const char ∗db=0, const
char ∗user=0, const char ∗password=0)

Create object and connect to database server over Unix domain sockets in one step.

• UnixDomainSocketConnection (const UnixDomainSocketConnection
&other)

Establish a new connection using the same parameters as an existing connection.

Generated on Fri Feb 29 16:26:00 2008 for MySQL++ by Doxygen

250 MySQL++ Class Documentation

• ∼UnixDomainSocketConnection ()
Destroy object.

• bool connect (const char ∗path, const char ∗db=0, const char ∗user=0, const
char ∗password=0)

Connect to database after object is created.

Static Public Member Functions

• static bool is_socket (const char ∗path, std::string ∗error=0)
Check that the given path names a Unix domain socket and that we have read-write
permission for it.

5.81.1 Detailed Description

Specialization of Connection (p.33) for Unix domain
sockets.

This class just simplifies the connection creation
interface of Connection (p.33). It does not add new
functionality.

5.81.2 Constructor & Destructor Documentation

5.81.2.1 mysqlpp::UnixDomainSocketConnection::UnixDomainSocket-
Connection (const char ∗ path, const char ∗ db = 0, const char ∗ user =
0, const char ∗ password = 0) [inline]

Create object and connect to database server over Unix
domain sockets in one step.

Parameters:

path filesystem path to socket

db name of database to use

user user name to log in under, or 0 to use the user
name the program is running under

password password to use when logging in

BEWARE: These parameters are not in the same order as
those in the corresponding constructor for Connection
(p.33). This is a feature, not a bug. :)

Generated on Fri Feb 29 16:26:00 2008 for MySQL++ by Doxygen

5.81 mysqlpp::UnixDomainSocketConnection Class Reference 251

5.81.2.2 mysqlpp::UnixDomainSocketConnection::UnixDomainSocket-
Connection (const UnixDomainSocketConnection & other)
[inline]

Establish a new connection using the same parameters as
an existing connection.

Parameters:

other pre-existing connection to clone

5.81.3 Member Function Documentation

5.81.3.1 bool mysqlpp::UnixDomainSocketConnection::connect (const char ∗
path, const char ∗ db = 0, const char ∗ user = 0, const char ∗ password =
0)

Connect to database after object is created.

It’s better to use the connect-on-create constructor if
you can. See its documentation for the meaning of these
parameters.

If you call this method on an object that is already
connected to a database server, the previous connection
is dropped and a new connection is established.

5.81.3.2 bool mysqlpp::UnixDomainSocketConnection::is_socket (const char ∗
path, std::string ∗ error = 0) [static]

Check that the given path names a Unix domain socket and
that we have read-write permission for it.

Parameters:

path the filesystem path to the socket

error on failure, reason is placed here; take default
if you do not need a reason if it fails

Returns:

false if address fails to pass sanity checks

The documentation for this class was generated from the
following files:

• uds_connection.h
• uds_connection.cpp

Generated on Fri Feb 29 16:26:00 2008 for MySQL++ by Doxygen

252 MySQL++ Class Documentation

5.82 mysqlpp::UseEmbeddedConnectionOption Class
Reference

Connect to embedded server in preference to remote
server.

#include <options.h>

Inheritance diagram for mysqlpp::UseEmbeddedConnection-
Option:

Collaboration diagram for mysqlpp::UseEmbeddedConnection-
Option:

5.82.1 Detailed Description

Connect to embedded server in preference to remote
server.

The documentation for this class was generated from the
following file:

• options.h

Generated on Fri Feb 29 16:26:00 2008 for MySQL++ by Doxygen

5.83 mysqlpp::UseQueryError Class Reference 253

5.83 mysqlpp::UseQueryError Class Reference

Exception (p.87) thrown when something goes wrong in
processing a "use" query.

#include <exceptions.h>

Inheritance diagram for mysqlpp::UseQueryError:

Collaboration diagram for mysqlpp::UseQueryError:

Public Member Functions

• UseQueryError (const char ∗w="")
Create exception object.

5.83.1 Detailed Description

Exception (p.87) thrown when something goes wrong in
processing a "use" query.

The documentation for this class was generated from the
following file:

• exceptions.h

Generated on Fri Feb 29 16:26:00 2008 for MySQL++ by Doxygen

254 MySQL++ Class Documentation

5.84 mysqlpp::UseQueryResult Class Reference

StoreQueryResult (p.217) set type for "use" queries.

#include <result.h>

Inheritance diagram for mysqlpp::UseQueryResult:

Collaboration diagram for mysqlpp::UseQueryResult:

Public Member Functions

• UseQueryResult ()
Default constructor.

• UseQueryResult (MYSQL_RES ∗result, DBDriver ∗dbd, bool te=true)
Create the object, fully initialized.

• UseQueryResult (const UseQueryResult &other)
Create a copy of another UseQueryResult (p. 254) object.

• ∼UseQueryResult ()
Destroy object.

Generated on Fri Feb 29 16:26:00 2008 for MySQL++ by Doxygen

5.84 mysqlpp::UseQueryResult Class Reference 255

• UseQueryResult & operator= (const UseQueryResult &rhs)
Copy another UseQueryResult (p. 254) object’s data into this object.

• const Field & fetch_field () const
Returns the next field in this result set.

• const Field & fetch_field (Fields::size_type i) const
Returns the given field in this result set.

• const unsigned long ∗ fetch_lengths () const
Returns the lengths of the fields in the current row of the result set.

• Row fetch_row () const
Returns the next row in a "use" query’s result set.

• MYSQL_ROW fetch_raw_row () const
Wraps mysql_fetch_row() in MySQL C API.

• void field_seek (Fields::size_type field) const
Jumps to the given field within the result set.

• operator MYSQL_RES ∗ () const
Return the pointer to the underlying MySQL C API result set object.

5.84.1 Detailed Description

StoreQueryResult (p.217) set type for "use" queries.

See the user manual for the reason you might want to
use this even though its interface is less friendly than
StoreQueryResult’s.

5.84.2 Member Function Documentation

5.84.2.1 Row mysqlpp::UseQueryResult::fetch_row () const

Returns the next row in a "use" query’s result set.

This is a thick wrapper around DBDriver::fetch_row()
(p.72). It does a lot of error checking before returning
the Row (p.173) object containing the row data.

Generated on Fri Feb 29 16:26:00 2008 for MySQL++ by Doxygen

256 MySQL++ Class Documentation

See also:

fetch_raw_row() (p.255)

5.84.2.2 void mysqlpp::UseQueryResult::field_seek (Fields::size_type field)
const [inline]

Jumps to the given field within the result set.

Calling this allows you to reset the default field index
used by fetch_field() (p.169).

5.84.2.3 mysqlpp::UseQueryResult::operator MYSQL_RES ∗ () const
[inline]

Return the pointer to the underlying MySQL C API result
set object.

///

The documentation for this class was generated from the
following files:

• result.h
• result.cpp

Generated on Fri Feb 29 16:26:00 2008 for MySQL++ by Doxygen

5.85 mysqlpp::UseRemoteConnectionOption Class Reference 257

5.85 mysqlpp::UseRemoteConnectionOption Class
Reference

Connect to remote server in preference to embedded
server.

#include <options.h>

Inheritance diagram for mysqlpp::UseRemoteConnection-
Option:

Collaboration diagram for mysqlpp::UseRemoteConnection-
Option:

5.85.1 Detailed Description

Connect to remote server in preference to embedded
server.

The documentation for this class was generated from the
following file:

• options.h

Generated on Fri Feb 29 16:26:00 2008 for MySQL++ by Doxygen

258 MySQL++ Class Documentation

5.86 mysqlpp::value_list_b< Seq, Manip > Struct
Template Reference

Same as value_list_ba (p.260), plus the option to have
some elements of the list suppressed.

#include <vallist.h>

Collaboration diagram for mysqlpp::value_list_b< Seq,
Manip >:

Public Member Functions

• value_list_b (const Seq &s, const std::vector< bool > &f, const char ∗d,
Manip m)

Create object.

Public Attributes

• const Seq ∗ list

set of objects in the value list

• const std::vector< bool > fields

delimiter to use between each value in the list when inserting it into a C++ stream

• const char ∗ delim

delimiter to use between each value in the list when inserting it into a C++ stream

• Manip manip

manipulator to use when inserting the list into a C++ stream

Generated on Fri Feb 29 16:26:00 2008 for MySQL++ by Doxygen

5.86 mysqlpp::value_list_b< Seq, Manip > Struct Template Reference 259

5.86.1 Detailed Description

template<class Seq, class Manip> struct mysqlpp::value_list_b< Seq, Manip >

Same as value_list_ba (p.260), plus the option to have
some elements of the list suppressed.

Imagine an object of this type contains the list (a, b,
c), that the object’s ’fields’ list is (true, false,
true), and that the object’s delimiter is set to ":".
When you insert that object into a C++ stream, you would
get "a:c".

See value_list_ba’s documentation for more details.

5.86.2 Constructor & Destructor Documentation

5.86.2.1 template<class Seq, class Manip> mysqlpp::value_list_b< Seq, Manip
>::value_list_b (const Seq & s, const std::vector< bool > & f, const
char ∗ d, Manip m) [inline]

Create object.

Parameters:

s set of objects in the value list

f for each true item in the list, the list item in
that position will be inserted into a C++ stream

d what delimiter to use between each value in the
list when inserting the list into a C++ stream

m manipulator to use when inserting the list into a
C++ stream

The documentation for this struct was generated from the
following file:

• vallist.h

Generated on Fri Feb 29 16:26:00 2008 for MySQL++ by Doxygen

260 MySQL++ Class Documentation

5.87 mysqlpp::value_list_ba< Seq, Manip > Struct
Template Reference

Holds a list of items, typically used to construct a SQL
"value list".

#include <vallist.h>

Collaboration diagram for mysqlpp::value_list_ba< Seq,
Manip >:

Public Member Functions

• value_list_ba (const Seq &s, const char ∗d, Manip m)
Create object.

Public Attributes

• const Seq ∗ list
set of objects in the value list

• const char ∗ delim
delimiter to use between each value in the list when inserting it into a C++ stream

• Manip manip
manipulator to use when inserting the list into a C++ stream

5.87.1 Detailed Description

template<class Seq, class Manip> struct mysqlpp::value_list_ba< Seq, Manip >

Holds a list of items, typically used to construct a SQL
"value list".

Generated on Fri Feb 29 16:26:00 2008 for MySQL++ by Doxygen

5.87 mysqlpp::value_list_ba< Seq, Manip > Struct Template Reference 261

The SQL INSERT statement has a VALUES clause; this class
can be used to construct the list of items for that
clause.

Imagine an object of this type contains the list (a, b,
c), and that the object’s delimiter symbol is set to ",
". When you insert that object into a C++ stream, you
would get "a, b, c".

This class is never instantiated by hand. The value_-
list() functions build instances of this structure
template to do their work. MySQL++’s SSQLS mechanism
calls those functions when building SQL queries; you can
call them yourself to do similar work. The "Harnessing
SSQLS Internals" section of the user manual has some
examples of this.

See also:

value_list_b (p.258)

5.87.2 Constructor & Destructor Documentation

5.87.2.1 template<class Seq, class Manip> mysqlpp::value_list_ba< Seq,
Manip >::value_list_ba (const Seq & s, const char ∗ d, Manip m)
[inline]

Create object.

Parameters:

s set of objects in the value list

d what delimiter to use between each value in the
list when inserting the list into a C++ stream

m manipulator to use when inserting the list into a
C++ stream

The documentation for this struct was generated from the
following file:

• vallist.h

Generated on Fri Feb 29 16:26:00 2008 for MySQL++ by Doxygen

262 MySQL++ Class Documentation

5.88 mysqlpp::WindowsNamedPipeConnection Class
Reference

Specialization of Connection (p.33) for Windows named
pipes.

#include <wnp_connection.h>

Inheritance diagram for mysqlpp::WindowsNamedPipe-
Connection:

Collaboration diagram for mysqlpp::WindowsNamedPipe-
Connection:

Public Member Functions

• WindowsNamedPipeConnection ()
Create object without connecting it to the MySQL server.

• WindowsNamedPipeConnection (const char ∗db, const char ∗user=0, const
char ∗password=0)

Create object and connect to database server over Windows named pipes in one
step.

• WindowsNamedPipeConnection (const WindowsNamedPipeConnection
&other)

Establish a new connection using the same parameters as an existing connection.

Generated on Fri Feb 29 16:26:00 2008 for MySQL++ by Doxygen

5.88 mysqlpp::WindowsNamedPipeConnection Class Reference 263

• ∼WindowsNamedPipeConnection ()

Destroy object.

• bool connect (const char ∗db=0, const char ∗user=0, const char
∗password=0)

Connect to database after object is created.

Static Public Member Functions

• static bool is_wnp (const char ∗server)

Check that given string denotes a Windows named pipe connection to MySQL.

5.88.1 Detailed Description

Specialization of Connection (p.33) for Windows named
pipes.

This class just simplifies the connection creation
interface of Connection (p.33). It does not add new
functionality.

5.88.2 Constructor & Destructor Documentation

5.88.2.1 mysqlpp::WindowsNamedPipeConnection::WindowsNamedPipe-
Connection (const char ∗ db, const char ∗ user = 0, const char ∗
password = 0) [inline]

Create object and connect to database server over Windows
named pipes in one step.

Parameters:

db name of database to use

user user name to log in under, or 0 to use the user
name the program is running under

password password to use when logging in

Generated on Fri Feb 29 16:26:00 2008 for MySQL++ by Doxygen

264 MySQL++ Class Documentation

5.88.2.2 mysqlpp::WindowsNamedPipeConnection::WindowsNamed-
PipeConnection (const WindowsNamedPipeConnection & other)
[inline]

Establish a new connection using the same parameters as
an existing connection.

Parameters:

other pre-existing connection to clone

5.88.3 Member Function Documentation

5.88.3.1 bool mysqlpp::WindowsNamedPipeConnection::connect (const char ∗
db = 0, const char ∗ user = 0, const char ∗ password = 0)

Connect to database after object is created.

It’s better to use the connect-on-create constructor if
you can. See its documentation for the meaning of these
parameters.

If you call this method on an object that is already
connected to a database server, the previous connection
is dropped and a new connection is established.

5.88.3.2 bool mysqlpp::WindowsNamedPipeConnection::is_wnp (const char ∗
server) [static]

Check that given string denotes a Windows named pipe
connection to MySQL.

Parameters:

server the server address

Returns:

false if server address does not denote a Windows
named pipe connection, or we are not running on
Windows

The documentation for this class was generated from the
following files:

• wnp_connection.h
• wnp_connection.cpp

Generated on Fri Feb 29 16:26:00 2008 for MySQL++ by Doxygen

5.89 mysqlpp::WriteTimeoutOption Class Reference 265

5.89 mysqlpp::WriteTimeoutOption Class Reference

Set (p.190) timeout for IPC data reads.

#include <options.h>

Inheritance diagram for mysqlpp::WriteTimeoutOption:

Collaboration diagram for mysqlpp::WriteTimeoutOption:

5.89.1 Detailed Description

Set (p.190) timeout for IPC data reads.

The documentation for this class was generated from the
following file:

• options.h

Generated on Fri Feb 29 16:26:00 2008 for MySQL++ by Doxygen

266 MySQL++ Class Documentation

Generated on Fri Feb 29 16:26:00 2008 for MySQL++ by Doxygen

Chapter 6

MySQL++ File Documentation

6.1 autoflag.h File Reference

Defines a template for setting a flag within a given
variable scope, and resetting it when exiting that scope.

Classes

• class AutoFlag< T >

A template for setting a flag on a variable as long as the object that set it is in scope.
Flag resets when object goes out of scope. Works on anything that looks like bool.

6.1.1 Detailed Description

Defines a template for setting a flag within a given
variable scope, and resetting it when exiting that scope.

268 MySQL++ File Documentation

6.2 beemutex.h File Reference

MUTually EXclusive lock class.

#include "exceptions.h"

Include dependency graph for beemutex.h:

This graph shows which files directly or indirectly
include this file:

Namespaces

• namespace mysqlpp

Classes

• class mysqlpp::BeecryptMutex

Wrapper around platform-specific mutexes.

• class mysqlpp::ScopedLock

Wrapper around BeecryptMutex (p. 27) to add scope-bound locking and unlocking.

6.2.1 Detailed Description

MUTually EXclusive lock class.

Author:

Bob Deblier <bob.deblier@telenet.be>

Generated on Fri Feb 29 16:26:00 2008 for MySQL++ by Doxygen

6.2 beemutex.h File Reference 269

Modified by Warren Young of Educational Technology
Resources, Inc. from version in Beecrypt 4.1.2:

• minor style changes to make it fit within MySQL++

• changed init() to a ctor and destroy() to a dtor

• class just becomes a no-op if no supported mutex type
is available

• throwing MutexFailed instead of char∗

• moved all method implementations from inline in the
.h file to a .cpp file so we don’t have to make the
header depend on config.h on autoconf-using systems

• made private mutex member a void∗ so we don’t have to
define the full type in the .h file, due to previous
item

• added more Doxygen comments, and changed some
existing comments

Generated on Fri Feb 29 16:26:00 2008 for MySQL++ by Doxygen

270 MySQL++ File Documentation

6.3 common.h File Reference

This file includes top-level definitions for use both
internal to the library, and outside it. Contrast
mysql++.h.

#include <mysql.h>

Include dependency graph for common.h:

This graph shows which files directly or indirectly
include this file:

Generated on Fri Feb 29 16:26:00 2008 for MySQL++ by Doxygen

6.3 common.h File Reference 271

6.3.1 Detailed Description

This file includes top-level definitions for use both
internal to the library, and outside it. Contrast
mysql++.h.

This file mostly takes care of platform differences.

Generated on Fri Feb 29 16:26:00 2008 for MySQL++ by Doxygen

272 MySQL++ File Documentation

6.4 comparable.h File Reference

Declares the Comparable<T> mixin.

This graph shows which files directly or indirectly
include this file:

Classes

• class Comparable< T >

Mix-in that gives its subclass a full set of comparison operators.

6.4.1 Detailed Description

Declares the Comparable<T> mixin.

Generated on Fri Feb 29 16:26:00 2008 for MySQL++ by Doxygen

6.5 connection.h File Reference 273

6.5 connection.h File Reference

Declares the Connection class.

#include "common.h"

#include "noexceptions.h"

#include "options.h"

#include <string>

#include "tcp_connection.h"

#include "uds_connection.h"

#include "wnp_connection.h"

Include dependency graph for connection.h:

This graph shows which files directly or indirectly
include this file:

Namespaces

• namespace mysqlpp

Generated on Fri Feb 29 16:26:00 2008 for MySQL++ by Doxygen

274 MySQL++ File Documentation

Classes

• class mysqlpp::Connection
Manages the connection to the database server.

6.5.1 Detailed Description

Declares the Connection class.

Every program using MySQL++ must create a Connection
object, which manages information about the connection
to the database server, and performs connection-related
operations once the connection is up. Subordinate
classes, such as Query and Row take their defaults as to
whether exceptions are thrown when errors are encountered
from the Connection object that created them, directly or
indirectly.

Generated on Fri Feb 29 16:26:00 2008 for MySQL++ by Doxygen

6.6 cpool.h File Reference 275

6.6 cpool.h File Reference

Declares the ConnectionPool class.

#include "beemutex.h"

#include <list>

#include <assert.h>

#include <time.h>

Include dependency graph for cpool.h:

This graph shows which files directly or indirectly
include this file:

Namespaces

• namespace mysqlpp

Classes

• class mysqlpp::ConnectionPool
Manages a pool of connections for programs that need more than one Connection
(p. 33) object at a time, but can’t predict how many they need in advance.

• struct mysqlpp::ConnectionPool::ConnectionInfo

6.6.1 Detailed Description

Declares the ConnectionPool class.

Generated on Fri Feb 29 16:26:00 2008 for MySQL++ by Doxygen

276 MySQL++ File Documentation

6.7 custom.h File Reference

Backwards-compatibility header; loads ssqls.h.

#include "ssqls.h"

Include dependency graph for custom.h:

6.7.1 Detailed Description

Backwards-compatibility header; loads ssqls.h.

Generated on Fri Feb 29 16:26:00 2008 for MySQL++ by Doxygen

6.8 datetime.h File Reference 277

6.8 datetime.h File Reference

Declares classes to add SQL-compatible date and time
types to C++’s type system.

#include "common.h"

#include "comparable.h"

#include <string>

#include <iostream>

Include dependency graph for datetime.h:

This graph shows which files directly or indirectly
include this file:

Namespaces

• namespace mysqlpp

Classes

• class mysqlpp::DateTime
C++ form of SQL’s DATETIME type.

• class mysqlpp::Date
C++ form of SQL’s DATE type.

Generated on Fri Feb 29 16:26:00 2008 for MySQL++ by Doxygen

278 MySQL++ File Documentation

• class mysqlpp::Time
C++ form of SQL’s TIME type.

Functions

• std::ostream & mysqlpp::operator<< (std::ostream &os, const Date-
Time &dt)

Inserts a DateTime (p. 58) object into a C++ stream in a SQL-compatible format.

• std::ostream & mysqlpp::operator<< (std::ostream &os, const Date &d)
Inserts a Date (p. 54) object into a C++ stream.

• std::ostream & mysqlpp::operator<< (std::ostream &os, const Time &t)
Inserts a Time (p. 236) object into a C++ stream in a SQL-compatible format.

6.8.1 Detailed Description

Declares classes to add SQL-compatible date and time
types to C++’s type system.

Generated on Fri Feb 29 16:26:00 2008 for MySQL++ by Doxygen

6.9 dbdriver.h File Reference 279

6.9 dbdriver.h File Reference

Declares the DBDriver class.

#include "common.h"

#include "options.h"

#include <typeinfo>

#include <limits.h>

Include dependency graph for dbdriver.h:

Namespaces

• namespace mysqlpp

Classes

• class mysqlpp::DBDriver
Provides a thin abstraction layer over the underlying database client library.

6.9.1 Detailed Description

Declares the DBDriver class.

Generated on Fri Feb 29 16:26:00 2008 for MySQL++ by Doxygen

280 MySQL++ File Documentation

6.10 exceptions.h File Reference

Declares the MySQL++-specific exception classes.

#include "options.h"

#include <exception>

#include <string>

Include dependency graph for exceptions.h:

This graph shows which files directly or indirectly
include this file:

Namespaces

• namespace mysqlpp

Classes

• class mysqlpp::Exception
Base class for all MySQL++ custom exceptions.

• class mysqlpp::BadConversion

Generated on Fri Feb 29 16:26:00 2008 for MySQL++ by Doxygen

6.10 exceptions.h File Reference 281

Exception (p. 87) thrown when a bad type conversion is attempted.

• class mysqlpp::BadFieldName

Exception (p. 87) thrown when a requested named field doesn’t exist.

• class mysqlpp::BadOption

Exception (p. 87) thrown when you pass an unrecognized option to
Connection::set_option() (p. 41).

• class mysqlpp::BadParamCount

Exception (p. 87) thrown when not enough query parameters are provided.

• class mysqlpp::UseQueryError

Exception (p. 87) thrown when something goes wrong in processing a "use" query.

• class mysqlpp::BadQuery

Exception (p. 87) thrown when the database server encounters a problem while pro-
cessing your query.

• class mysqlpp::ConnectionFailed

Exception (p. 87) thrown when there is a problem related to the database server
connection.

• class mysqlpp::DBSelectionFailed

Exception (p. 87) thrown when the program tries to select a new database and the
database server refuses for some reason.

• class mysqlpp::MutexFailed

Exception (p. 87) thrown when a BeecryptMutex (p. 27) object fails.

• class mysqlpp::ObjectNotInitialized

Exception (p. 87) thrown when you try to use an object that isn’t completely initial-
ized.

• class mysqlpp::SelfTestFailed

Used within MySQL++’s test harness only.

• class mysqlpp::TypeLookupFailed

Thrown from the C++ to SQL data type conversion routine when it can’t figure out
how to map the type.

Generated on Fri Feb 29 16:26:00 2008 for MySQL++ by Doxygen

282 MySQL++ File Documentation

6.10.1 Detailed Description

Declares the MySQL++-specific exception classes.

When exceptions are enabled for a given
mysqlpp::OptionalExceptions (p.126) derivative, any of
these exceptions can be thrown on error.

Generated on Fri Feb 29 16:26:00 2008 for MySQL++ by Doxygen

6.11 field.h File Reference 283

6.11 field.h File Reference

Declares the Field and Fields classes.

#include "common.h"

#include "type_info.h"

#include <vector>

Include dependency graph for field.h:

This graph shows which files directly or indirectly
include this file:

Namespaces

• namespace mysqlpp

Classes

• class mysqlpp::Field

Class to hold information about a SQL field.

Typedefs

• typedef std::vector< Field > mysqlpp::Fields

The list-of-Fields type.

Generated on Fri Feb 29 16:26:00 2008 for MySQL++ by Doxygen

284 MySQL++ File Documentation

6.11.1 Detailed Description

Declares the Field and Fields classes.

Generated on Fri Feb 29 16:26:00 2008 for MySQL++ by Doxygen

6.12 field_names.h File Reference 285

6.12 field_names.h File Reference

Declares a class to hold a list of field names.

#include <string>

#include <vector>

#include <ctype.h>

Include dependency graph for field_names.h:

This graph shows which files directly or indirectly
include this file:

Namespaces

• namespace mysqlpp

Classes

• class mysqlpp::FieldNames
Holds a list of SQL field names.

6.12.1 Detailed Description

Declares a class to hold a list of field names.

Generated on Fri Feb 29 16:26:00 2008 for MySQL++ by Doxygen

286 MySQL++ File Documentation

6.13 field_types.h File Reference

Declares a class to hold a list of SQL field type info.

#include "type_info.h"

#include <vector>

Include dependency graph for field_types.h:

This graph shows which files directly or indirectly
include this file:

Namespaces

• namespace mysqlpp

Classes

• class mysqlpp::FieldTypes
A vector of SQL field types.

6.13.1 Detailed Description

Declares a class to hold a list of SQL field type info.

Generated on Fri Feb 29 16:26:00 2008 for MySQL++ by Doxygen

6.14 manip.h File Reference 287

6.14 manip.h File Reference

Declares the Query stream manipulators and operators.

#include "common.h"

#include "myset.h"

#include "stadapter.h"

#include <iostream>

Include dependency graph for manip.h:

This graph shows which files directly or indirectly
include this file:

Generated on Fri Feb 29 16:26:00 2008 for MySQL++ by Doxygen

288 MySQL++ File Documentation

Namespaces

• namespace mysqlpp

Enumerations

• enum quote_type0 { mysqlpp::quote }
• enum quote_only_type0 { mysqlpp::quote_only }
• enum quote_double_only_type0 { mysqlpp::quote_double_only }
• enum escape_type0 { escape }
• enum do_nothing_type0 { mysqlpp::do_nothing }
• enum ignore_type0 { mysqlpp::ignore }

Functions

• SQLQueryParms & mysqlpp::operator<< (escape_type2 p, SQLType-
Adapter &in)

Inserts a SQLTypeAdapter (p. 206) into a stream, escaping special SQL characters.

• ostream & mysqlpp::operator<< (escape_type1 o, const SQLTypeAdapter
&in)

Inserts anything that can be converted to SQLTypeAdapter (p. 206) into a stream,
escaping special SQL characters as needed.

6.14.1 Detailed Description

Declares the Query stream manipulators and operators.

These manipulators let you automatically quote elements
or escape characters that are special in SQL when
inserting them into a Query stream. They make it easier
to build syntactically-correct SQL queries.

This file also includes special operator<< definitions
for a few key MySQL++ data types, since we know when to
do automatic quoting and escaping for these types. This
only works with Query streams, not regular std::ostreams,
since we’re only concerned with making correct SQL, not
with presentation matters.

Generated on Fri Feb 29 16:26:00 2008 for MySQL++ by Doxygen

6.14 manip.h File Reference 289

test/test_manip.cpp exercises the mechanisms defined
here.

Generated on Fri Feb 29 16:26:00 2008 for MySQL++ by Doxygen

290 MySQL++ File Documentation

6.15 myset.h File Reference

Declares templates for generating custom containers used
elsewhere in the library.

#include "common.h"

#include "mystring.h"

#include "stream2string.h"

#include <iostream>

#include <set>

Include dependency graph for myset.h:

This graph shows which files directly or indirectly
include this file:

Namespaces

• namespace mysqlpp

Generated on Fri Feb 29 16:26:00 2008 for MySQL++ by Doxygen

6.15 myset.h File Reference 291

Classes

• class mysqlpp::Set< Container >

A special std::set derivative for holding MySQL data sets.

Functions

• template<class Container> std::ostream &
mysqlpp::operator<< (std::ostream &s, const Set< Container > &d)

Inserts a Set (p. 190) object into a C++ stream.

6.15.1 Detailed Description

Declares templates for generating custom containers used
elsewhere in the library.

Generated on Fri Feb 29 16:26:00 2008 for MySQL++ by Doxygen

292 MySQL++ File Documentation

6.16 mysql++.h File Reference

The main MySQL++ header file.

#include "connection.h"

#include "cpool.h"

#include "query.h"

#include "sql_types.h"

#include "transaction.h"

Include dependency graph for mysql++.h:

Generated on Fri Feb 29 16:26:00 2008 for MySQL++ by Doxygen

6.16 mysql++.h File Reference 293

Namespaces

• namespace mysqlpp

Defines

• #define MYSQLPP_VERSION(major, minor, bugfix) (((major) << 16)
| ((minor) << 8) | (bugfix))

Encode MySQL++ library version number.

Generated on Fri Feb 29 16:26:00 2008 for MySQL++ by Doxygen

294 MySQL++ File Documentation

• #define MYSQLPP_HEADER_VERSION MYSQLPP_VERSION(3, 0, 0)
Get the library version number that mysql++.h comes from.

Functions

• unsigned int mysqlpp::get_library_version ()
Get the current MySQL++ library version number.

6.16.1 Detailed Description

The main MySQL++ header file.

This file brings in all MySQL++ headers except for
custom.h (p.276) and custom-macros.h which are a strictly
optional feature of MySQL++.

There is no point in trying to optimize which headers you
include, because the MySQL++ headers are so intertwined.
You can only get trivial compile time benefits, at the
expense of clarity.

6.16.2 Define Documentation

6.16.2.1 #define MYSQLPP_HEADER_VERSION MYSQLPP_VERSION(3,
0, 0)

Get the library version number that mysql++.h comes from.

MySQL++ Version number that the mysql++.h header file
comes from, encoded by MYSQLPP_VERSION macro. Compare
this value to what mysqlpp_lib_version() returns in order
to ensure that your program is using header files from
the same version of MySQL++ as the actual library you’re
linking to.

6.16.2.2 #define MYSQLPP_VERSION(major, minor, bugfix) (((major) << 16)
| ((minor) << 8) | (bugfix))

Encode MySQL++ library version number.

This macro takes major, minor and bugfix numbers (e.g.
1, 2, and 3) and encodes them like 0x010203.

Generated on Fri Feb 29 16:26:00 2008 for MySQL++ by Doxygen

6.17 mystring.h File Reference 295

6.17 mystring.h File Reference

Declares String class, MySQL++’s generic std::string-like
class, used for holding data received from the database
server.

#include "common.h"

#include "datetime.h"

#include "exceptions.h"

#include "null.h"

#include "sql_buffer.h"

#include <string>

#include <sstream>

#include <limits>

#include <stdlib.h>

#include <string.h>

Include dependency graph for mystring.h:

Generated on Fri Feb 29 16:26:00 2008 for MySQL++ by Doxygen

296 MySQL++ File Documentation

This graph shows which files directly or indirectly
include this file:

Namespaces

• namespace mysqlpp

Classes

• class mysqlpp::String
A std::string work-alike that can convert itself from SQL text data formats to C++
data types.

Generated on Fri Feb 29 16:26:00 2008 for MySQL++ by Doxygen

6.17 mystring.h File Reference 297

Functions

• std::ostream & mysqlpp::operator<< (std::ostream &o, const String
&in)

Stream insertion operator for String (p. 220) objects.

6.17.1 Detailed Description

Declares String class, MySQL++’s generic std::string-like
class, used for holding data received from the database
server.

Generated on Fri Feb 29 16:26:00 2008 for MySQL++ by Doxygen

298 MySQL++ File Documentation

6.18 noexceptions.h File Reference

Declares interface that allows exceptions to be optional.

#include "common.h"

Include dependency graph for noexceptions.h:

This graph shows which files directly or indirectly
include this file:

Namespaces

• namespace mysqlpp

Classes

• class mysqlpp::OptionalExceptions
Interface allowing a class to have optional exceptions.

• class mysqlpp::NoExceptions
Disable exceptions in an object derived from OptionalExceptions (p. 126).

6.18.1 Detailed Description

Declares interface that allows exceptions to be optional.

Generated on Fri Feb 29 16:26:00 2008 for MySQL++ by Doxygen

6.18 noexceptions.h File Reference 299

A class may inherit from OptionalExceptions, which will
add to it a mechanism by which a user can tell objects
of that class to suppress exceptions. (They are enabled
by default.) This module also declares a NoExceptions
class, objects of which take a reference to any class
derived from OptionalExceptions. The NoExceptions
constructor calls the method that disables exceptions,
and the destructor reverts them to the previous state.
One uses the NoExceptions object within a scope to
suppress exceptions in that block, without having to
worry about reverting the setting when the block exits.

Generated on Fri Feb 29 16:26:00 2008 for MySQL++ by Doxygen

300 MySQL++ File Documentation

6.19 null.h File Reference

Declares classes that implement SQL "null" semantics
within C++’s type system.

#include "exceptions.h"

#include <iostream>

#include <string>

Include dependency graph for null.h:

This graph shows which files directly or indirectly
include this file:

Namespaces

• namespace mysqlpp

Classes

• class mysqlpp::null_type
The type of the global mysqlpp::null object.

• struct mysqlpp::NullIsNull

Generated on Fri Feb 29 16:26:00 2008 for MySQL++ by Doxygen

6.19 null.h File Reference 301

Class for objects that define SQL null in terms of MySQL++’s null_type (p. 119).

• struct mysqlpp::NullIsZero
Class for objects that define SQL null as 0.

• struct mysqlpp::NullIsBlank
Class for objects that define SQL null as a blank C string.

• class mysqlpp::Null< Type, Behavior >

Class for holding data from a SQL column with the NULL attribute.

Functions

• template<class Type, class Behavior> std::ostream &
mysqlpp::operator<< (std::ostream &o, const Null< Type, Behavior >
&n)

Inserts null-able data into a C++ stream if it is not actually null. Otherwise, insert
something appropriate for null data.

Variables

• const std::string mysqlpp::null_str
"NULL" string constant

• const null_type mysqlpp::null = null_type()
Global ’null’ instance. Use wherever you need a SQL null.

6.19.1 Detailed Description

Declares classes that implement SQL "null" semantics
within C++’s type system.

This is required because C++’s own NULL type is not
semantically the same as SQL nulls.

Generated on Fri Feb 29 16:26:00 2008 for MySQL++ by Doxygen

302 MySQL++ File Documentation

6.20 options.h File Reference

Declares the Option class hierarchy, used to implement
connection options in Connection and DBDriver classes.

#include "common.h"

#include <deque>

#include <string>

Include dependency graph for options.h:

This graph shows which files directly or indirectly
include this file:

Namespaces

• namespace mysqlpp

Generated on Fri Feb 29 16:26:00 2008 for MySQL++ by Doxygen

6.20 options.h File Reference 303

Classes

• class mysqlpp::Option
Define abstract interface for all ∗Option subclasses.

• class mysqlpp::DataOption< T >

Define abstract interface for all ∗Options that take a lone scalar as an argument.

• class mysqlpp::CompressOption
Enable data compression on the connection.

• class mysqlpp::ConnectTimeoutOption
Change Connection::connect() (p. 38) default timeout.

• class mysqlpp::FoundRowsOption
Make Query::affected_rows() (p. 130) return number of matched rows.

• class mysqlpp::GuessConnectionOption
Allow C API to guess what kind of connection to use.

• class mysqlpp::IgnoreSpaceOption
Allow spaces after function names in queries.

• class mysqlpp::InitCommandOption
Give SQL executed on connect.

• class mysqlpp::InteractiveOption
Assert that this is an interactive program.

• class mysqlpp::LocalFilesOption
Enable LOAD DATA LOCAL statement.

• class mysqlpp::LocalInfileOption
Enable LOAD LOCAL INFILE statement.

• class mysqlpp::MultiResultsOption
Enable multiple result sets in a reply.

• class mysqlpp::MultiStatementsOption
Enable multiple queries in a request to the server.

• class mysqlpp::NamedPipeOption
Suggest use of named pipes.

Generated on Fri Feb 29 16:26:00 2008 for MySQL++ by Doxygen

304 MySQL++ File Documentation

• class mysqlpp::NoSchemaOption
Disable db.tbl.col syntax in queries.

• class mysqlpp::ProtocolOption
Set (p. 190) type of protocol to use.

• class mysqlpp::ReadDefaultFileOption
Override use of my.cnf.

• class mysqlpp::ReadDefaultGroupOption
Override use of my.cnf.

• class mysqlpp::ReadTimeoutOption
Set (p. 190) timeout for IPC data reads.

• class mysqlpp::ReconnectOption
Enable automatic reconnection to server.

• class mysqlpp::ReportDataTruncationOption
Set (p. 190) reporting of data truncation errors.

• class mysqlpp::SecureAuthOption
Enforce use of secure authentication, refusing connection if not available.

• class mysqlpp::SetCharsetDirOption
Give path to charset definition files.

• class mysqlpp::SetCharsetNameOption
Give name of default charset.

• class mysqlpp::SetClientIpOption
Fake client IP address when connecting to embedded server.

• class mysqlpp::SharedMemoryBaseNameOption
Set (p. 190) name of shmem segment for IPC.

• class mysqlpp::SslOption
Specialized option for handling SSL parameters.

• class mysqlpp::UseEmbeddedConnectionOption
Connect to embedded server in preference to remote server.

Generated on Fri Feb 29 16:26:00 2008 for MySQL++ by Doxygen

6.20 options.h File Reference 305

• class mysqlpp::UseRemoteConnectionOption
Connect to remote server in preference to embedded server.

• class mysqlpp::WriteTimeoutOption
Set (p. 190) timeout for IPC data reads.

Typedefs

• typedef DataOption< unsigned > mysqlpp::IntegerOption
Option (p. 124) w/ int argument.

• typedef DataOption< bool > mysqlpp::BooleanOption
Option (p. 124) w/ bool argument.

• typedef DataOption< std::string > mysqlpp::StringOption
Option (p. 124) w/ string argument.

• typedef std::deque< Option ∗ > mysqlpp::OptionList
The data type of the list of connection options.

• typedef OptionList::const_iterator mysqlpp::OptionListIt
Primary iterator type into List.

6.20.1 Detailed Description

Declares the Option class hierarchy, used to implement
connection options in Connection and DBDriver classes.

This is tied closely enough to DBDriver that there’s a
pure-OO argument that it should be declared as protected
or private members within DBDriver. We do it outside
DBDriver because there’s so much of it. It’d overwhelm
everything else that’s going on in that class totally out
of proprortion to the importance of options.

Generated on Fri Feb 29 16:26:00 2008 for MySQL++ by Doxygen

306 MySQL++ File Documentation

6.21 qparms.h File Reference

Declares the template query parameter-related stuff.

#include "stadapter.h"

#include <vector>

Include dependency graph for qparms.h:

This graph shows which files directly or indirectly
include this file:

Namespaces

• namespace mysqlpp

Classes

• class mysqlpp::SQLQueryParms
This class holds the parameter values for filling template queries.

Generated on Fri Feb 29 16:26:00 2008 for MySQL++ by Doxygen

6.21 qparms.h File Reference 307

• struct mysqlpp::SQLParseElement
Used within Query (p. 130) to hold elements for parameterized queries.

6.21.1 Detailed Description

Declares the template query parameter-related stuff.

The classes defined in this file are used by class Query
when it parses a template query: they hold information
that it finds in the template, so it can assemble a SQL
statement later on demand.

Generated on Fri Feb 29 16:26:00 2008 for MySQL++ by Doxygen

308 MySQL++ File Documentation

6.22 query.h File Reference

Defines a class for building and executing SQL queries.

#include "common.h"

#include "noexceptions.h"

#include "qparms.h"

#include "querydef.h"

#include "result.h"

#include "row.h"

#include "stadapter.h"

#include <deque>

#include <iomanip>

#include <list>

#include <map>

#include <set>

#include <vector>

Include dependency graph for query.h:

Generated on Fri Feb 29 16:26:00 2008 for MySQL++ by Doxygen

6.22 query.h File Reference 309

This graph shows which files directly or indirectly
include this file:

Namespaces

• namespace mysqlpp

Classes

• class mysqlpp::Query
A class for building and executing SQL queries.

Generated on Fri Feb 29 16:26:00 2008 for MySQL++ by Doxygen

310 MySQL++ File Documentation

Functions

• std::ostream & mysqlpp::operator<< (std::ostream &os, Query
&q)

Insert raw query string into the given stream.

6.22.1 Detailed Description

Defines a class for building and executing SQL queries.

Generated on Fri Feb 29 16:26:00 2008 for MySQL++ by Doxygen

6.23 refcounted.h File Reference 311

6.23 refcounted.h File Reference

Declares the RefCountedPointer template.

#include <memory>

Include dependency graph for refcounted.h:

This graph shows which files directly or indirectly
include this file:

Namespaces

• namespace mysqlpp

Classes

• struct mysqlpp::RefCountedPointerDestroyer< T >

Functor to call delete on the pointer you pass to it.

• class mysqlpp::RefCountedPointer< T, Destroyer >

Creates an object that acts as a reference-counted pointer to another object.

6.23.1 Detailed Description

Declares the RefCountedPointer template.

Generated on Fri Feb 29 16:26:00 2008 for MySQL++ by Doxygen

312 MySQL++ File Documentation

6.24 result.h File Reference

Declares classes for holding information about SQL query
results.

#include "common.h"

#include "exceptions.h"

#include "field.h"

#include "field_names.h"

#include "field_types.h"

#include "noexceptions.h"

#include "refcounted.h"

#include "row.h"

Include dependency graph for result.h:

Generated on Fri Feb 29 16:26:00 2008 for MySQL++ by Doxygen

6.24 result.h File Reference 313

This graph shows which files directly or indirectly
include this file:

Namespaces

• namespace mysqlpp

Classes

• class mysqlpp::SimpleResult
Holds information about the result of queries that don’t return rows.

• class mysqlpp::ResultBase
Base class for StoreQueryResult (p. 217) and UseQueryResult (p. 254).

• class mysqlpp::StoreQueryResult
StoreQueryResult (p. 217) set type for "store" queries.

• struct mysqlpp::RefCountedPointerDestroyer< MYSQL_RES >

Functor to call mysql_free_result() on the pointer you pass to it.

• class mysqlpp::UseQueryResult
StoreQueryResult (p. 217) set type for "use" queries.

Functions

• void mysqlpp::swap (StoreQueryResult &x, StoreQueryResult &y)
Swaps two StoreQueryResult (p. 217) objects.

• void mysqlpp::swap (UseQueryResult &x, UseQueryResult &y)
Swaps two UseQueryResult (p. 254) objects.

6.24.1 Detailed Description

Declares classes for holding information about SQL query
results.

Generated on Fri Feb 29 16:26:00 2008 for MySQL++ by Doxygen

314 MySQL++ File Documentation

6.25 row.h File Reference

Declares the classes for holding row data from a result
set.

#include "common.h"

#include "mystring.h"

#include "noexceptions.h"

#include "refcounted.h"

#include "vallist.h"

#include <vector>

#include <string>

Include dependency graph for row.h:

Generated on Fri Feb 29 16:26:00 2008 for MySQL++ by Doxygen

6.25 row.h File Reference 315

This graph shows which files directly or indirectly
include this file:

Namespaces

• namespace mysqlpp

Classes

• class mysqlpp::Row
Manages rows from a result set.

6.25.1 Detailed Description

Declares the classes for holding row data from a result
set.

Generated on Fri Feb 29 16:26:00 2008 for MySQL++ by Doxygen

316 MySQL++ File Documentation

6.26 sql_buffer.h File Reference

Declares the SQLBuffer class.

#include "refcounted.h"

#include "type_info.h"

#include <string>

Include dependency graph for sql_buffer.h:

This graph shows which files directly or indirectly
include this file:

Namespaces

• namespace mysqlpp

Classes

• class mysqlpp::SQLBuffer
Holds SQL data in string form plus type information for use in converting the string
to compatible C++ data types.

Generated on Fri Feb 29 16:26:00 2008 for MySQL++ by Doxygen

6.26 sql_buffer.h File Reference 317

Typedefs

• typedef RefCountedPointer< SQLBuffer > mysqlpp::Ref-
CountedBuffer

Reference-counted version of SQLBuffer (p. 197).

6.26.1 Detailed Description

Declares the SQLBuffer class.

Generated on Fri Feb 29 16:26:00 2008 for MySQL++ by Doxygen

318 MySQL++ File Documentation

6.27 sql_types.h File Reference

Declares the closest C++ equivalent of each MySQL column
type.

#include "common.h"

#include "tiny_int.h"

#include <string>

Include dependency graph for sql_types.h:

This graph shows which files directly or indirectly
include this file:

Namespaces

• namespace mysqlpp

6.27.1 Detailed Description

Declares the closest C++ equivalent of each MySQL column
type.

The typedefs defined here are only for the "non-NULL"
variants. To get nullable versions, wrap the appropriate
type in the Null<T> template. See null.h (p.300) for
more information.

Generated on Fri Feb 29 16:26:00 2008 for MySQL++ by Doxygen

6.28 stadapter.h File Reference 319

6.28 stadapter.h File Reference

Declares the SQLTypeAdapter class.

#include "common.h"

#include "datetime.h"

#include "null.h"

#include "sql_buffer.h"

#include "sql_types.h"

#include <stdexcept>

#include <string>

Include dependency graph for stadapter.h:

This graph shows which files directly or indirectly
include this file:

Generated on Fri Feb 29 16:26:00 2008 for MySQL++ by Doxygen

320 MySQL++ File Documentation

Namespaces

• namespace mysqlpp

Classes

• class mysqlpp::SQLTypeAdapter
Converts many different data types to strings suitable for use in SQL queries.

6.28.1 Detailed Description

Declares the SQLTypeAdapter class.

Generated on Fri Feb 29 16:26:00 2008 for MySQL++ by Doxygen

6.29 stream2string.h File Reference 321

6.29 stream2string.h File Reference

Declares an adapter that converts something that can be
inserted into a C++ stream into a std::string type.

#include <sstream>

#include <string>

Include dependency graph for stream2string.h:

This graph shows which files directly or indirectly
include this file:

Namespaces

• namespace mysqlpp

Functions

• template<class T> std::string mysqlpp::stream2string (const
T &object)

Converts anything you can insert into a C++ stream to a std::string via
std::ostringstream.

6.29.1 Detailed Description

Declares an adapter that converts something that can be
inserted into a C++ stream into a std::string type.

Generated on Fri Feb 29 16:26:00 2008 for MySQL++ by Doxygen

322 MySQL++ File Documentation

6.30 tcp_connection.h File Reference

Declares the TCPConnection class.

#include "connection.h"

Include dependency graph for tcp_connection.h:

This graph shows which files directly or indirectly
include this file:

Namespaces

• namespace mysqlpp

Classes

• class mysqlpp::TCPConnection
Specialization of Connection (p.33) for TCP/IP.

6.30.1 Detailed Description

Declares the TCPConnection class.

Generated on Fri Feb 29 16:26:00 2008 for MySQL++ by Doxygen

6.31 tiny_int.h File Reference 323

6.31 tiny_int.h File Reference

Declares class for holding a SQL TINYINT.

#include "common.h"

#include <ostream>

Include dependency graph for tiny_int.h:

This graph shows which files directly or indirectly
include this file:

Namespaces

• namespace mysqlpp

Classes

• class mysqlpp::tiny_int< VT >

Class for holding an SQL TINYINT value.

Functions

• template<typename VT> std::ostream &
mysqlpp::operator<< (std::ostream &os, tiny_int< VT > i)

Insert a tiny_int (p.240) into a C++ stream.

Generated on Fri Feb 29 16:26:00 2008 for MySQL++ by Doxygen

324 MySQL++ File Documentation

6.31.1 Detailed Description

Declares class for holding a SQL TINYINT.

Generated on Fri Feb 29 16:26:00 2008 for MySQL++ by Doxygen

6.32 transaction.h File Reference 325

6.32 transaction.h File Reference

Declares the Transaction class.

#include "common.h"

Include dependency graph for transaction.h:

This graph shows which files directly or indirectly
include this file:

Namespaces

• namespace mysqlpp

Classes

• class mysqlpp::Transaction
Helper object for creating exception-safe SQL transactions.

6.32.1 Detailed Description

Declares the Transaction class.

This object works with the Connection class to automate
the use of MySQL transactions. It allows you to express
these transactions directly in C++ code instead of
sending the raw SQL commands.

Generated on Fri Feb 29 16:26:00 2008 for MySQL++ by Doxygen

326 MySQL++ File Documentation

6.33 type_info.h File Reference

Declares classes that provide an interface between the
SQL and C++ type systems.

#include "common.h"

#include "exceptions.h"

#include <map>

#include <sstream>

#include <typeinfo>

Include dependency graph for type_info.h:

This graph shows which files directly or indirectly
include this file:

Namespaces

• namespace mysqlpp

Generated on Fri Feb 29 16:26:00 2008 for MySQL++ by Doxygen

6.33 type_info.h File Reference 327

Classes

• class mysqlpp::mysql_type_info
SQL field type information.

Functions

• bool mysqlpp::operator== (const mysql_type_info &a, const mysql_-
type_info &b)

Returns true if two mysql_type_info (p. 105) objects are equal.

• bool mysqlpp::operator!= (const mysql_type_info &a, const mysql_type_-
info &b)

Returns true if two mysql_type_info (p. 105) objects are not equal.

• bool mysqlpp::operator== (const std::type_info &a, const mysql_type_info
&b)

Returns true if a given mysql_type_info (p. 105) object is equal to a given C++ type_-
info object.

• bool mysqlpp::operator!= (const std::type_info &a, const mysql_type_info
&b)

Returns true if a given mysql_type_info (p. 105) object is not equal to a given C++
type_info object.

• bool mysqlpp::operator== (const mysql_type_info &a, const std::type_info
&b)

Returns true if a given mysql_type_info (p. 105) object is equal to a given C++ type_-
info object.

• bool mysqlpp::operator!= (const mysql_type_info &a, const std::type_info
&b)

Returns true if a given mysql_type_info (p. 105) object is not equal to a given C++
type_info object.

6.33.1 Detailed Description

Declares classes that provide an interface between the
SQL and C++ type systems.

These classes are mostly used internal to the library.

Generated on Fri Feb 29 16:26:00 2008 for MySQL++ by Doxygen

328 MySQL++ File Documentation

6.34 uds_connection.h File Reference

Declares the UnixDomainSocketConnection class.

#include "connection.h"

Include dependency graph for uds_connection.h:

This graph shows which files directly or indirectly
include this file:

Namespaces

• namespace mysqlpp

Classes

• class mysqlpp::UnixDomainSocketConnection
Specialization of Connection (p.33) for Unix domain sockets.

6.34.1 Detailed Description

Declares the UnixDomainSocketConnection class.

Generated on Fri Feb 29 16:26:00 2008 for MySQL++ by Doxygen

6.35 vallist.h File Reference 329

6.35 vallist.h File Reference

Declares templates for holding lists of values.

#include "manip.h"

#include <string>

#include <vector>

Include dependency graph for vallist.h:

This graph shows which files directly or indirectly

Generated on Fri Feb 29 16:26:00 2008 for MySQL++ by Doxygen

330 MySQL++ File Documentation

include this file:

Namespaces

• namespace mysqlpp

Classes

• struct mysqlpp::equal_list_ba< Seq1, Seq2, Manip >

Holds two lists of items, typically used to construct a SQL "equals clause".

• struct mysqlpp::equal_list_b< Seq1, Seq2, Manip >

Same as equal_list_ba (p. 84), plus the option to have some elements of the equals
clause suppressed.

• struct mysqlpp::value_list_ba< Seq, Manip >

Holds a list of items, typically used to construct a SQL "value list".

• struct mysqlpp::value_list_b< Seq, Manip >

Same as value_list_ba (p. 260), plus the option to have some elements of the list
suppressed.

Functions

• template<class Seq1, class Seq2, class Manip>
std::ostream & mysqlpp::operator<< (std::ostream &o, const
equal_list_ba< Seq1, Seq2, Manip > &el)

Inserts an equal_list_ba (p. 84) into an std::ostream.

• template<class Seq1, class Seq2, class Manip> std::ostream &
mysqlpp::operator<< (std::ostream &o, const equal_list_b< Seq1,
Seq2, Manip > &el)

Same as operator<< for equal_list_ba (p. 84), plus the option to suppress insertion
of some list items in the stream.

• template<class Seq, class Manip> std::ostream & mysqlpp::operator<<
(std::ostream &o, const value_list_ba< Seq, Manip > &cl)

Inserts a value_list_ba (p. 260) into an std::ostream.

Generated on Fri Feb 29 16:26:00 2008 for MySQL++ by Doxygen

6.35 vallist.h File Reference 331

• template<class Seq, class Manip> std::ostream & mysqlpp::operator<<
(std::ostream &o, const value_list_b< Seq, Manip > &cl)

Same as operator<< for value_list_ba (p. 260), plus the option to suppress inser-
tion of some list items in the stream.

• void mysqlpp::create_vector (size_t size, std::vector< bool > &v, bool t0,
bool t1=false, bool t2=false, bool t3=false, bool t4=false, bool t5=false, bool
t6=false, bool t7=false, bool t8=false, bool t9=false, bool ta=false, bool
tb=false, bool tc=false)

Create a vector of bool with the given arguments as values.

• template<class Container> void mysqlpp::create_vector (const Container
&c, std::vector< bool > &v, std::string s0, std::string s1, std::string s2,
std::string s3, std::string s4, std::string s5, std::string s6, std::string s7,
std::string s8, std::string s9, std::string sa, std::string sb, std::string sc)

Create a vector of bool using a list of named fields.

• template<class Seq> value_list_ba< Seq, do_nothing_type0 >
mysqlpp::value_list (const Seq &s, const char ∗d=",")

Constructs a value_list_ba (p. 260).

• template<class Seq, class Manip> value_list_ba< Seq, Manip >
mysqlpp::value_list (const Seq &s, const char ∗d, Manip m)

Constructs a value_list_ba (p. 260).

• template<class Seq, class Manip> value_list_b< Seq, Manip >
mysqlpp::value_list (const Seq &s, const char ∗d, Manip m, const
std::vector< bool > &vb)

Constructs a value_list_b (p. 258) (sparse value list).

• template<class Seq, class Manip> value_list_b< Seq, Manip >
mysqlpp::value_list (const Seq &s, const char ∗d, Manip m, bool t0,
bool t1=false, bool t2=false, bool t3=false, bool t4=false, bool t5=false, bool
t6=false, bool t7=false, bool t8=false, bool t9=false, bool ta=false, bool
tb=false, bool tc=false)

Constructs a value_list_b (p. 258) (sparse value list).

• template<class Seq> value_list_b< Seq, do_nothing_type0 >
mysqlpp::value_list (const Seq &s, const char ∗d, bool t0, bool t1=false,
bool t2=false, bool t3=false, bool t4=false, bool t5=false, bool t6=false, bool
t7=false, bool t8=false, bool t9=false, bool ta=false, bool tb=false, bool
tc=false)

Constructs a sparse value list.

Generated on Fri Feb 29 16:26:00 2008 for MySQL++ by Doxygen

332 MySQL++ File Documentation

• template<class Seq> value_list_b< Seq, do_nothing_type0 >
mysqlpp::value_list (const Seq &s, bool t0, bool t1=false, bool t2=false,
bool t3=false, bool t4=false, bool t5=false, bool t6=false, bool t7=false, bool
t8=false, bool t9=false, bool ta=false, bool tb=false, bool tc=false)

Constructs a sparse value list.

• template<class Seq1, class Seq2> equal_list_ba< Seq1, Seq2, do_nothing_-
type0 > mysqlpp::equal_list (const Seq1 &s1, const Seq2 &s2, const char
∗d=",", const char ∗e=" = ")

Constructs an equal_list_ba (p. 84).

• template<class Seq1, class Seq2, class Manip> equal_list_ba< Seq1, Seq2,
Manip > mysqlpp::equal_list (const Seq1 &s1, const Seq2 &s2, const char
∗d, const char ∗e, Manip m)

Constructs an equal_list_ba (p. 84).

• template<class Seq1, class Seq2, class Manip> equal_list_b< Seq1, Seq2,
Manip > mysqlpp::equal_list (const Seq1 &s1, const Seq2 &s2, const char
∗d, const char ∗e, Manip m, const std::vector< bool > &vb)

Constructs a equal_list_b (p. 81) (sparse equal list).

• template<class Seq1, class Seq2, class Manip> equal_list_b< Seq1, Seq2,
Manip > mysqlpp::equal_list (const Seq1 &s1, const Seq2 &s2, const char
∗d, const char ∗e, Manip m, bool t0, bool t1=false, bool t2=false, bool
t3=false, bool t4=false, bool t5=false, bool t6=false, bool t7=false, bool
t8=false, bool t9=false, bool ta=false, bool tb=false, bool tc=false)

Constructs a equal_list_b (p. 81) (sparse equal list).

• template<class Seq1, class Seq2> equal_list_b< Seq1, Seq2, do_nothing_-
type0 > mysqlpp::equal_list (const Seq1 &s1, const Seq2 &s2, const char
∗d, const char ∗e, bool t0, bool t1=false, bool t2=false, bool t3=false, bool
t4=false, bool t5=false, bool t6=false, bool t7=false, bool t8=false, bool
t9=false, bool ta=false, bool tb=false, bool tc=false)

Constructs a equal_list_b (p. 81) (sparse equal list).

• template<class Seq1, class Seq2> equal_list_b< Seq1, Seq2, do_nothing_-
type0 > mysqlpp::equal_list (const Seq1 &s1, const Seq2 &s2, const char
∗d, bool t0, bool t1=false, bool t2=false, bool t3=false, bool t4=false, bool
t5=false, bool t6=false, bool t7=false, bool t8=false, bool t9=false, bool
ta=false, bool tb=false, bool tc=false)

Constructs a equal_list_b (p. 81) (sparse equal list).

Generated on Fri Feb 29 16:26:00 2008 for MySQL++ by Doxygen

6.35 vallist.h File Reference 333

• template<class Seq1, class Seq2> equal_list_b< Seq1, Seq2, do_nothing_-
type0 > mysqlpp::equal_list (const Seq1 &s1, const Seq2 &s2, bool t0,
bool t1=false, bool t2=false, bool t3=false, bool t4=false, bool t5=false, bool
t6=false, bool t7=false, bool t8=false, bool t9=false, bool ta=false, bool
tb=false, bool tc=false)

Constructs a equal_list_b (p. 81) (sparse equal list).

6.35.1 Detailed Description

Declares templates for holding lists of values.

Generated on Fri Feb 29 16:26:00 2008 for MySQL++ by Doxygen

334 MySQL++ File Documentation

6.36 wnp_connection.h File Reference

Declares the WindowsNamedPipeConnection class.

#include "connection.h"

Include dependency graph for wnp_connection.h:

This graph shows which files directly or indirectly
include this file:

Namespaces

• namespace mysqlpp

Classes

• class mysqlpp::WindowsNamedPipeConnection
Specialization of Connection (p.33) for Windows named pipes.

6.36.1 Detailed Description

Declares the WindowsNamedPipeConnection class.

Generated on Fri Feb 29 16:26:00 2008 for MySQL++ by Doxygen

Index

∼BeecryptMutex
mysqlpp::BeecryptMutex,

28
∼Comparable

Comparable, 30
∼ConnectionPool

mysqlpp::ConnectionPool,
48

∼NoExceptions
mysqlpp::NoExceptions,

112
∼RefCountedPointer

mysqlpp::RefCounted-
Pointer, 163

∼Transaction
mysqlpp::Transaction,

245

affected_rows
mysqlpp::DBDriver, 68

assign
mysqlpp::RefCounted-

Pointer, 163
mysqlpp::SQLTypeAdapter,

211
mysqlpp::String, 226

at
mysqlpp::Row, 179
mysqlpp::SQLTypeAdapter,

212
mysqlpp::String, 227

AutoFlag, 13
autoflag.h, 265

BadConversion
mysqlpp::BadConversion,

16, 17

BadFieldName
mysqlpp::BadFieldName,

19
BadQuery

mysqlpp::BadQuery, 25
base_type

mysqlpp::mysql_type_-
info, 107

BeecryptMutex
mysqlpp::BeecryptMutex,

27
beemutex.h, 266
before

mysqlpp::mysql_type_-
info, 107

bound
mysqlpp::SQLQueryParms,

204

c_type
mysqlpp::mysql_type_-

info, 107
clear

mysqlpp::ConnectionPool,
48

client_version
mysqlpp::DBDriver, 68

commit
mysqlpp::Transaction,

245
common.h, 268
Comparable, 29

∼Comparable, 30
compare, 30

comparable.h, 270
compare

Comparable, 30

336 INDEX

mysqlpp::Date, 56
mysqlpp::DateTime, 61
mysqlpp::SQLTypeAdapter,

212, 213
mysqlpp::String, 227,

228
mysqlpp::Time, 237

connect
mysqlpp::Connection, 38
mysqlpp::DBDriver, 68,

69
mysqlpp::TCPConnection,

233
mysqlpp::UnixDomain-

SocketConnection, 250
mysqlpp::WindowsNamed-

PipeConnection, 263
connected

mysqlpp::Connection, 38
mysqlpp::DBDriver, 69

Connection
mysqlpp::Connection, 36,

37
connection.h, 271
ConnectionFailed

mysqlpp::Connection-
Failed, 45

conv
mysqlpp::String, 228

copy
mysqlpp::Connection, 38
mysqlpp::DBDriver, 69

count_rows
mysqlpp::Connection, 38

cpool.h, 273
create

mysqlpp::ConnectionPool,
48

create_db
mysqlpp::Connection, 38
mysqlpp::DBDriver, 69

current_field_
mysqlpp::ResultBase, 171

custom.h, 274

data_seek

mysqlpp::DBDriver, 69
Date

mysqlpp::Date, 56
DateTime

mysqlpp::DateTime, 60,
61

datetime.h, 275
DBDriver

mysqlpp::DBDriver, 68
dbdriver.h, 277
DBSelectionFailed

mysqlpp::DBSelection-
Failed, 80

destroy
mysqlpp::ConnectionPool,

48
disconnect

mysqlpp::DBDriver, 70
drop_db

mysqlpp::Connection, 39
mysqlpp::DBDriver, 70

enable_ssl
mysqlpp::DBDriver, 70

equal_list
mysqlpp::Row, 179, 180

equal_list_b
mysqlpp::equal_list_b,

82
equal_list_ba

mysqlpp::equal_list_ba,
85

err_api_limit
mysqlpp::Option, 125

err_api_reject
mysqlpp::Option, 125

err_connected
mysqlpp::Option, 125

err_NONE
mysqlpp::Option, 125

errnum
mysqlpp::BadQuery, 26
mysqlpp::Connection-

Failed, 45
mysqlpp::DBDriver, 70

Generated on Fri Feb 29 16:26:00 2008 for MySQL++ by Doxygen

INDEX 337

mysqlpp::DBSelection-
Failed, 80

mysqlpp::Query, 137
Error

mysqlpp::Option, 125
error

mysqlpp::Connection, 39
mysqlpp::DBDriver, 70
mysqlpp::Query, 137

escape_q
mysqlpp::mysql_type_-

info, 107
escape_string

mysqlpp::DBDriver, 71
mysqlpp::Query, 137
mysqlpp::SQLQueryParms,

204
escape_string_no_conn

mysqlpp::DBDriver, 71
exceptions.h, 278
exec

mysqlpp::Query, 139
execute

mysqlpp::DBDriver, 71
mysqlpp::Query, 139, 140

fetch_field
mysqlpp::DBDriver, 71

fetch_lengths
mysqlpp::DBDriver, 72

fetch_row
mysqlpp::DBDriver, 72
mysqlpp::UseQueryResult,

254
field.h, 281
field_list

mysqlpp::Row, 180-182
field_names.h, 283
field_num

mysqlpp::ResultBase, 171
field_seek

mysqlpp::DBDriver, 72
mysqlpp::UseQueryResult,

255
field_types.h, 284
for_each

mysqlpp::Query, 141, 142
free_result

mysqlpp::DBDriver, 72

grab
mysqlpp::ConnectionPool,

49

id
mysqlpp::mysql_type_-

info, 108
insert

mysqlpp::Query, 142
insert_id

mysqlpp::DBDriver, 72
mysqlpp::Query, 143

ipc_info
mysqlpp::Connection, 39
mysqlpp::DBDriver, 73

is_null
mysqlpp::Null, 118
mysqlpp::SQLBuffer, 199

is_processed
mysqlpp::SQLTypeAdapter,

213
is_socket

mysqlpp::UnixDomain-
SocketConnection, 250

is_wnp
mysqlpp::WindowsNamed-

PipeConnection, 263
iterator

mysqlpp::Row, 178

kill
mysqlpp::Connection, 39
mysqlpp::DBDriver, 73

length
mysqlpp::Field, 91
mysqlpp::SQLBuffer, 199

list_type
mysqlpp::Row, 178

manip.h, 285
max_idle_time

Generated on Fri Feb 29 16:26:00 2008 for MySQL++ by Doxygen

338 INDEX

mysqlpp::ConnectionPool,
49

max_size
mysqlpp::String, 229

more_results
mysqlpp::DBDriver, 73
mysqlpp::Query, 143

myset.h, 288
mysql++.h, 290

MYSQLPP_HEADER_VERSION,
292

MYSQLPP_VERSION, 292
mysql_type_info

mysqlpp::mysql_type_-
info, 106

mysqlpp::BadConversion, 15
mysqlpp::BadConversion

BadConversion, 16, 17
mysqlpp::BadFieldName, 18
mysqlpp::BadFieldName

BadFieldName, 19
mysqlpp::BadOption, 20
mysqlpp::BadOption

what_option, 21
mysqlpp::BadParamCount, 22
mysqlpp::BadQuery, 24
mysqlpp::BadQuery

BadQuery, 25
errnum, 26

mysqlpp::BeecryptMutex, 27
mysqlpp::BeecryptMutex

∼BeecryptMutex, 28
BeecryptMutex, 27

mysqlpp::CompressOption, 32
mysqlpp::Connection, 33

connect, 38
connected, 38
Connection, 36, 37
copy, 38
count_rows, 38
create_db, 38
drop_db, 39
error, 39
ipc_info, 39
kill, 39

operator private_bool_-
type, 40

ping, 40
query, 40
select_db, 41
set_option, 41
thread_id, 42
thread_start, 42

mysqlpp::ConnectionFailed,
44

mysqlpp::ConnectionFailed
ConnectionFailed, 45
errnum, 45

mysqlpp::ConnectionPool, 46
mysqlpp::ConnectionPool

∼ConnectionPool, 48
clear, 48
create, 48
destroy, 48
grab, 49
max_idle_time, 49
release, 49

mysqlpp::ConnectTimeoutOption,
51

mysqlpp::DataOption, 52
mysqlpp::Date, 54

compare, 56
Date, 56
operator time_t, 56
year, 56, 57

mysqlpp::DateTime, 58
mysqlpp::DateTime

compare, 61
DateTime, 60, 61
now, 61
year, 61, 62

mysqlpp::DBDriver, 63
affected_rows, 68
client_version, 68
connect, 68, 69
connected, 69
copy, 69
create_db, 69
data_seek, 69
DBDriver, 68
disconnect, 70

Generated on Fri Feb 29 16:26:00 2008 for MySQL++ by Doxygen

INDEX 339

drop_db, 70
enable_ssl, 70
errnum, 70
error, 70
escape_string, 71
escape_string_no_conn,

71
execute, 71
fetch_field, 71
fetch_lengths, 72
fetch_row, 72
field_seek, 72
free_result, 72
insert_id, 72
ipc_info, 73
kill, 73
more_results, 73
next_result, 73
nr_code, 68
nr_error, 68
nr_last_result, 68
nr_more_results, 68
num_fields, 73
num_rows, 74
ping, 74
protocol_version, 74
query_info, 74
refresh, 74
result_empty, 75
server_status, 75
server_version, 75
set_option, 75
shutdown, 76
store_result, 76
thread_aware, 76
thread_end, 76
thread_id, 77
thread_start, 77
use_result, 77

mysqlpp::DBSelectionFailed,
79

mysqlpp::DBSelectionFailed
DBSelectionFailed, 80
errnum, 80

mysqlpp::equal_list_b, 81
equal_list_b, 82

mysqlpp::equal_list_ba, 84
equal_list_ba, 85

mysqlpp::Exception, 87
mysqlpp::Field, 89

length, 91
mysqlpp::FieldNames, 92
mysqlpp::FieldTypes, 94
mysqlpp::FieldTypes

operator=, 94
mysqlpp::FoundRowsOption,

95
mysqlpp::GuessConnectionOption,

96
mysqlpp::IgnoreSpaceOption,

97
mysqlpp::InitCommandOption,

98
mysqlpp::InteractiveOption,

99
mysqlpp::LocalFilesOption,

100
mysqlpp::LocalInfileOption,

101
mysqlpp::MultiResultsOption,

102
mysqlpp::MultiStatementsOption,

103
mysqlpp::MutexFailed, 104
mysqlpp::mysql_type_info,

105
base_type, 107
before, 107
c_type, 107
escape_q, 107
id, 108
mysql_type_info, 106
name, 108
operator=, 108
quote_q, 108
sql_name, 108
string_type, 109

mysqlpp::NamedPipeOption,
110

mysqlpp::NoExceptions, 111
mysqlpp::NoExceptions

∼NoExceptions, 112

Generated on Fri Feb 29 16:26:00 2008 for MySQL++ by Doxygen

340 INDEX

NoExceptions, 111
mysqlpp::NoSchemaOption,

113
mysqlpp::Null, 114

is_null, 118
Null, 116
operator Type &, 117
operator<, 117
operator=, 117
operator==, 118

mysqlpp::null_type, 119
mysqlpp::NullIsBlank, 120
mysqlpp::NullIsNull, 121
mysqlpp::NullIsZero, 122
mysqlpp::ObjectNotInitialized,

123
mysqlpp::Option, 124

err_api_limit, 125
err_api_reject, 125
err_connected, 125
err_NONE, 125
Error, 125

mysqlpp::OptionalExceptions,
126

mysqlpp::OptionalExceptions
OptionalExceptions, 127
set_exceptions, 127

mysqlpp::ProtocolOption,
129

mysqlpp::Query, 130
errnum, 137
error, 137
escape_string, 137
exec, 139
execute, 139, 140
for_each, 141, 142
insert, 142
insert_id, 143
more_results, 143
operator private_bool_-

type, 143
operator=, 144
parse, 144
Query, 136
replace, 144
reset, 145

store, 145, 146
store_if, 147
store_next, 148
storein, 149
storein_sequence, 149,

150
storein_set, 150, 151
str, 151, 152
template_defaults, 154
update, 152
use, 152, 153

mysqlpp::ReadDefaultFileOption,
156

mysqlpp::ReadDefaultGroupOption,
157

mysqlpp::ReadTimeoutOption,
158

mysqlpp::ReconnectOption,
159

mysqlpp::RefCountedPointer,
160

mysqlpp::RefCountedPointer
∼RefCountedPointer, 163
assign, 163
operator const void ∗,

164
operator void ∗, 164
operator=, 164, 165
RefCountedPointer, 162

mysqlpp::RefCountedPointerDestroyer,
166

mysqlpp::RefCountedPointerDestroyer<
MYSQL_RES >, 167

mysqlpp::ReportDataTruncationOption,
168

mysqlpp::ResultBase, 169
mysqlpp::ResultBase

current_field_, 171
field_num, 171

mysqlpp::Row, 173
at, 179
equal_list, 179, 180
field_list, 180-182
iterator, 178
list_type, 178

Generated on Fri Feb 29 16:26:00 2008 for MySQL++ by Doxygen

INDEX 341

operator private_bool_-
type, 182

operator[], 183
reference, 178
reverse_iterator, 178
Row, 179
value_list, 183-186

mysqlpp::ScopedLock, 187
mysqlpp::SecureAuthOption,

188
mysqlpp::SelfTestFailed,

189
mysqlpp::Set, 190
mysqlpp::SetCharsetDirOption,

191
mysqlpp::SetCharsetNameOption,

192
mysqlpp::SetClientIpOption,

193
mysqlpp::SharedMemoryBaseNameOption,

194
mysqlpp::SimpleResult, 195
mysqlpp::SimpleResult

operator private_bool_-
type, 196

mysqlpp::SQLBuffer, 197
is_null, 199
length, 199
SQLBuffer, 198

mysqlpp::SQLParseElement,
200

mysqlpp::SQLParseElement
SQLParseElement, 201

mysqlpp::SQLQueryParms, 202
mysqlpp::SQLQueryParms

bound, 204
escape_string, 204
operator+, 204
set, 204
SQLQueryParms, 203

mysqlpp::SQLTypeAdapter,
206

mysqlpp::SQLTypeAdapter
assign, 211
at, 212
compare, 212, 213

is_processed, 213
operator=, 213
set_processed, 214
SQLTypeAdapter, 210
type_id, 214

mysqlpp::SslOption, 215
mysqlpp::SslOption

SslOption, 215
mysqlpp::StoreQueryResult,

217
mysqlpp::StoreQueryResult

operator private_bool_-
type, 218

mysqlpp::String, 219
assign, 226
at, 227
compare, 227, 228
conv, 228
max_size, 229
operator Null, 229
operator=, 229
operator[], 229
String, 224, 225
to_string, 230

mysqlpp::TCPConnection, 231
connect, 233
parse_address, 233
TCPConnection, 232

mysqlpp::Time, 235
compare, 237
operator time_t, 237
Time, 237

mysqlpp::tiny_int, 239
tiny_int, 242

mysqlpp::TooOld, 243
mysqlpp::Transaction, 244

∼Transaction, 245
commit, 245
rollback, 245
Transaction, 244

mysqlpp::TypeLookupFailed,
246

mysqlpp::UnixDomainSocketConnection,
248

mysqlpp::UnixDomainSocket-
Connection

Generated on Fri Feb 29 16:26:00 2008 for MySQL++ by Doxygen

342 INDEX

connect, 250
is_socket, 250
UnixDomainSocketConnection,

249
mysqlpp::UseEmbeddedConnectionOption,

251
mysqlpp::UseQueryError, 252
mysqlpp::UseQueryResult,

253
mysqlpp::UseQueryResult

fetch_row, 254
field_seek, 255
operator MYSQL_RES ∗,

255
mysqlpp::UseRemoteConnectionOption,

256
mysqlpp::value_list_b, 257

value_list_b, 258
mysqlpp::value_list_ba, 259

value_list_ba, 260
mysqlpp::WindowsNamedPipeConnection,

261
mysqlpp::WindowsNamedPipe-

Connection
connect, 263
is_wnp, 263
WindowsNamedPipeConnection,

262
mysqlpp::WriteTimeoutOption,

264
MYSQLPP_HEADER_VERSION

mysql++.h, 292
MYSQLPP_VERSION

mysql++.h, 292
mystring.h, 293

name
mysqlpp::mysql_type_-

info, 108
next_result

mysqlpp::DBDriver, 73
NoExceptions

mysqlpp::NoExceptions,
111

noexceptions.h, 296
now

mysqlpp::DateTime, 61
nr_code

mysqlpp::DBDriver, 68
nr_error

mysqlpp::DBDriver, 68
nr_last_result

mysqlpp::DBDriver, 68
nr_more_results

mysqlpp::DBDriver, 68
Null

mysqlpp::Null, 116
null.h, 298
num_fields

mysqlpp::DBDriver, 73
num_rows

mysqlpp::DBDriver, 74

operator const void ∗
mysqlpp::RefCounted-

Pointer, 164
operator MYSQL_RES ∗

mysqlpp::UseQueryResult,
255

operator Null
mysqlpp::String, 229

operator private_bool_type
mysqlpp::Connection, 40
mysqlpp::Query, 143
mysqlpp::Row, 182
mysqlpp::SimpleResult,

196
mysqlpp::StoreQuery-

Result, 218
operator time_t

mysqlpp::Date, 56
mysqlpp::Time, 237

operator Type &
mysqlpp::Null, 117

operator void ∗
mysqlpp::RefCounted-

Pointer, 164
operator+

mysqlpp::SQLQueryParms,
204

operator<
mysqlpp::Null, 117

Generated on Fri Feb 29 16:26:00 2008 for MySQL++ by Doxygen

INDEX 343

operator=
mysqlpp::FieldTypes, 94
mysqlpp::mysql_type_-

info, 108
mysqlpp::Null, 117
mysqlpp::Query, 144
mysqlpp::RefCounted-

Pointer, 164, 165
mysqlpp::SQLTypeAdapter,

213
mysqlpp::String, 229

operator==
mysqlpp::Null, 118

operator[]
mysqlpp::Row, 183
mysqlpp::String, 229

OptionalExceptions
mysqlpp::Optional-

Exceptions, 127
options.h, 300

parse
mysqlpp::Query, 144

parse_address
mysqlpp::TCPConnection,

233
ping

mysqlpp::Connection, 40
mysqlpp::DBDriver, 74

protocol_version
mysqlpp::DBDriver, 74

qparms.h, 304
Query

mysqlpp::Query, 136
query

mysqlpp::Connection, 40
query.h, 306
query_info

mysqlpp::DBDriver, 74
quote_q

mysqlpp::mysql_type_-
info, 108

refcounted.h, 309
RefCountedPointer

mysqlpp::RefCounted-
Pointer, 162

reference
mysqlpp::Row, 178

refresh
mysqlpp::DBDriver, 74

release
mysqlpp::ConnectionPool,

49
replace

mysqlpp::Query, 144
reset

mysqlpp::Query, 145
result.h, 310
result_empty

mysqlpp::DBDriver, 75
reverse_iterator

mysqlpp::Row, 178
rollback

mysqlpp::Transaction,
245

Row
mysqlpp::Row, 179

row.h, 312

select_db
mysqlpp::Connection, 41

server_status
mysqlpp::DBDriver, 75

server_version
mysqlpp::DBDriver, 75

set
mysqlpp::SQLQueryParms,

204
set_exceptions

mysqlpp::Optional-
Exceptions, 127

set_option
mysqlpp::Connection, 41
mysqlpp::DBDriver, 75

set_processed
mysqlpp::SQLTypeAdapter,

214
shutdown

mysqlpp::DBDriver, 76
sql_buffer.h, 314

Generated on Fri Feb 29 16:26:00 2008 for MySQL++ by Doxygen

344 INDEX

sql_name
mysqlpp::mysql_type_-

info, 108
sql_types.h, 316
SQLBuffer

mysqlpp::SQLBuffer, 198
SQLParseElement

mysqlpp::SQLParse-
Element, 201

SQLQueryParms
mysqlpp::SQLQueryParms,

203
SQLTypeAdapter

mysqlpp::SQLTypeAdapter,
210

SslOption
mysqlpp::SslOption, 215

stadapter.h, 317
store

mysqlpp::Query, 145, 146
store_if

mysqlpp::Query, 147
store_next

mysqlpp::Query, 148
store_result

mysqlpp::DBDriver, 76
storein

mysqlpp::Query, 149
storein_sequence

mysqlpp::Query, 149, 150
storein_set

mysqlpp::Query, 150, 151
str

mysqlpp::Query, 151, 152
stream2string.h, 319
String

mysqlpp::String, 224,
225

string_type
mysqlpp::mysql_type_-

info, 109

tcp_connection.h, 320
TCPConnection

mysqlpp::TCPConnection,
232

template_defaults
mysqlpp::Query, 154

thread_aware
mysqlpp::DBDriver, 76

thread_end
mysqlpp::DBDriver, 76

thread_id
mysqlpp::Connection, 42
mysqlpp::DBDriver, 77

thread_start
mysqlpp::Connection, 42
mysqlpp::DBDriver, 77

Time
mysqlpp::Time, 237

tiny_int
mysqlpp::tiny_int, 242

tiny_int.h, 321
to_string

mysqlpp::String, 230
Transaction

mysqlpp::Transaction,
244

transaction.h, 323
type_id

mysqlpp::SQLTypeAdapter,
214

type_info.h, 324

uds_connection.h, 326
UnixDomainSocketConnection

mysqlpp::UnixDomain-
SocketConnection, 249

update
mysqlpp::Query, 152

use
mysqlpp::Query, 152, 153

use_result
mysqlpp::DBDriver, 77

vallist.h, 327
value_list

mysqlpp::Row, 183-186
value_list_b

mysqlpp::value_list_b,
258

value_list_ba

Generated on Fri Feb 29 16:26:00 2008 for MySQL++ by Doxygen

INDEX 345

mysqlpp::value_list_ba,
260

what_option
mysqlpp::BadOption, 21

WindowsNamedPipeConnection
mysqlpp::WindowsNamed-

PipeConnection, 262
wnp_connection.h, 332

year
mysqlpp::Date, 56, 57
mysqlpp::DateTime, 61,

62

Generated on Fri Feb 29 16:26:00 2008 for MySQL++ by Doxygen

