
FastGraph Example Note

Table of Contents
1. Introduction .. 1
2. Performance Issues .. 1
3. Memory Issues .. 2

1. Introduction
JGraph provides a large range of functionality in the core library aimed at the majority of users and use
cases. To make JGraph as simple as possible for the bulk of people, there are not excessive switches and
configuration for each of the features. This can mean that users seeking high performance can be disap-
pointed by the library as-is, in terms of both speed and memory footprint. These notes and the FastGraph
example are mostly aimed at users looking to produce a fairly simple application that loads a huge graph
initially and can afford to disable certain features for performance advantages. Though, many of the
ideas can be adapted for other uses.

JGraph adds new functionality through extension, but also disables functionality through extension. By
providing method hooks for sub-classes it is possible to make a wide range of changes without changing
the core library. The FastGraph example demonstrates the disabling of various features of JGraph in or-
der to improve performance and memory footprint. The majority of users do not use the features men-
tioned and so it is important to check their are switched off. Some of the memory footprint improve-
ments are achieved using more common features being disabled and consideration should be given at a
design level as to whether or not the features are required. However, enabling and disabling the features
are generally very simple changes, so late changes to these area are not generally an issue.

A lot of changes went into JGraph 5.5.1 relating to performance and memory footprints, if these issues
are of concern it is worth upgrading.

2. Performance Issues

• Use the simplest router for edges you can afford to

• Turn visible ports off, that is the ports are not always visible on all vertices at all times. If you have a
large number of vertices painting the ports takes time. See the FastGraph constructor in the example
code for the call (setPortsVisible(false)).

• Turn the grid off and snapping to grid (setGridEnabled(false)). Snapping a large number of
vertices takes time.

• Turn selection upon insertion off, selecting a large insertion can cause a large performance hit. There
are two methods in the GraphLayoutCache that deal with this, depending on whether or not the
cache is partial. If in doubt disable both:

graph.getGraphLayoutCache().setSelectsAllInsertedCells(false);
graph.getGraphLayoutCache().setSelectsLocalInsertedCells(false);

• Consider turning double buffering off

1

setDoubleBuffered(false);

Double buffering creates flicker-free graphics at a often very large performance penalty. Consider
whether or not your application is less useable because of flickering or the user has to wait 20
seconds for a redraw? Dynamic use of double buffering is also an option when there is a large
amount on the screen turn it off and turn it on for simple graph or detailed zooms on large graphs.

• Consider whether or not you need multiple independent views in your graph. Inserting directly into
the model insert() method (same applies to the edit() method) is quicker than inserting into the
GraphLayoutCache. If there is no view local information (i. e. no information that is only to go into
certain views) inserting into the model is perfectly valid. Even if you need independent views, large
initial insertions that are common to all views can go into the model, later changes can be via the
GraphLayoutCache.

3. Memory Issues
Memory footprint not only affects whether or not the application can run without an out of memory
message, but also reducing the memory footprint considerably improves performance by reducing the
number of constructor calls and causing the application to be less likely to use swap memory space on
the host machine. If memory issues are encountered consider changing the heap space available to the
application, for example, the -Xms and -Xmx VM command line arguments set the initial heap size and
maximum heap size respectively.

-Xms64m sets the initial heap to 64MB
-Xmx256m sets the maximum heap to 256MB

• Consider changing initial capacities of commonly used collections, in particular attribute maps.
Think about the lowest value of capacity that shouldn't result in a reallocation for the majority of
cells. Remember to consider that maps are resized when their capacity reaches the load factor pro-
portion of the capacity.

• Try to avoid begin and end decorations on edges if you have a large number of edges. The drawing
points of each one need to be stored.

• A large difference in memory footprint for huge insertions can be gained from disabling undos. If
the graph is empty before a huge insert the application could work out how to restore the empty
graph rather than store the large amount of information in the undo. FastGraph demonstrates how
this can be done.

FastGraphModel has a variable called undoDisabled, simply set to true in this example. You
might want to set this to true for a large insert call and then enable undos for the other graph opera-
tions, for example. This custom model overrides insert() and handleAttributes(). insert() uses the flag
to avoid indicating that an undoable event has occurred and handleAttributes() calls the superclass
method if undos are allowed, otherwise does not create the undo like its parent method.

If undo is disabled for a large initial insert there is another memory saving that can be gained in the
cell views. FastGraph provides custom views for ports, vertices and edges. The getCellAttributes() in
the parent AbstractCellView class clones the attribute map on each refresh so that the original attrib-
utes are not changed in-place. The downside of changing attributes in place is that undos are not cre-
ated correctly, but if they are disabled, this isn't a problem. The custom view versions of getCellAt-
tributes() in the custom view check whether or not undo is enabled and, if not, they use the model
cell's attributes instead of performing the clone for every attribute map of every cell.

FastGraph Example Note

2

• If your application will not have views that use view-local attributes (where view attributes override
the models) then the attributes member variable of cell views does not need to be used and does not
need to be allocated space. The custom cell view in FastGraph overrides the createAttributeMap()
hook to return the static empty attribute map AttributeMap.emptyAttributeMap. By overriding
changeAttributes() and setAttributes() to work directly on the allAttributes map all cell view inform-
ation will be stored there and attributes will be unused and unallocated. Note that if undos are left
disabled then allAttributes will always be the actual model cell attribute map.

So one attribute map per cell view can be saved by not allowing view-local attributes for that cell type
and another attribute map per cell view can be saved by not allowing undos. The memory footprint sav-
ing is considerable for large numbers of cells but this needs to be weighed up against the loss of func-
tionality in an application.

The JGraph development team have a great deal of experience in profiling JGraph-based applications
and tuning JGraph for quick and large performance improvements. If you are considering getting for ap-
plication tuned by the experts contact sales@jgraph.com for a quote.

FastGraph Example Note

3

