
Linux-GPIB 3.2.11 Documentation
Frank Mori Hess

fmhess@users.sourceforge.net

Copyright © 2003-2005 Frank Mori Hess

1. Copying

Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free
Documentation License, Version 1.2 or any later version published by the Free Software Foundation;
with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts. A copy of the license is
included in the section entitled "GNU Free Documentation License".

Alternatively, you may redistribute and/or modify this document under the terms of the GNU General
Public License as published by the Free Software Foundation; either version 2 of the License, or (at your
option) any later version.

2. Configuration

Configuration of the GPIB library is accomplished through the configuration file /etc/gpib.conf, and the
administration program gpib_config.

gpib.conf

Name
gpib.conf — GPIB library configuration file

Description

The library, and the administration tool gpib_config read their configuration information from the file
/etc/gpib.conf. A template gpib.conf file can be found in the util/templates/ subdirectory of the linux-gpib
package.

1

Linux-GPIB 3.2.11 Documentation

The configuration file must contain one or more ’interface’ entries, and can contain zero or more ’device’
entries. ’device’ entries are only required if you wish to open device descriptors with ibfind() instead of
using ibdev(). Several example entries, and a table summarizing the possible options follow.

interface {
minor = 0
board_type = "ni_pci"
pad = 0
master = yes
}

interface {
minor = 1
board_type = "ines_pci"
name = "joe"
pad = 5
sad = 0
timeout = T10s
pci_bus = 0
pci_slot = 0xd
master = no
}

interface {
minor = 2
board_type = "pcII"
pad = 3
sad = 0x62
eos = 0x0d
set-reos = yes
set-bin = no
set-xeos = no
set-eot = yes
base = 0x300
irq = 5
dma = 0
master = no
}

device {
minor = 0
name = "counter"
pad = 24
}

device {
minor = 0
name = "voltmeter"
pad = 7
sad = 110
eos = 0xa

2

Linux-GPIB 3.2.11 Documentation

set-reos = yes
set-bin = no
set-xeos = yes
set-eot = no
timeout = T1s
}

Table 1. configuration options

option name description used by interface or
device entries

required or optional

base Specifies the base ioport or io
memory address for a board that
lacks plug-and-play capability.

interface optional

board_type Specifies the type of
interface board. See the
drivers.txt file for a list
of possible board types,
and the kernel driver
module that supports
them.

interface required

dma Specifies the dma
channel for a board that
lacks plug-and-play
capability.

interface optional

eos Sets the end-of-string
byte for board or device
descriptors obtained
with ibfind(). See also
the set-reos, set-bin, and
set-xeos options.

interface or device optional

irq Specifies the interrupt
level for a board that
lacks plug-and-play
capability.

interface optional

master Set to ’yes’ if you want
the interface board to be
the system controller of
the bus. There can only
be one system controller
on a bus.

interface required

3

Linux-GPIB 3.2.11 Documentation

option name description used by interface or
device entries

required or optional

minor ’minor’ specifies the
minor number of the
device file this interface
board will use. A
’minor’ of 0
corresponds to
/dev/gpib0, 1 is
/dev/gpib1, etc. The
minor number is also
equal to the ’board
index’ which can be
used as a board
descriptor, and is passed
as one of the arguments
of ibdev()

interface required

name The ’name’ specifies the
name which can be used
with ibfind() to get a
descriptor for the board
or device associated
with this entry.

interface or device optional

pad Specifies the primary
GPIB address (valid
addresses are 0 to 30).
For interfaces, this is the
primary address that the
board will be assigned
when it is first brought
online. For devices, this
is address that will be
used by device
descriptors obtained
with ibfind().

interface or device required

pci_bus Useful for
distinguishing between
multiple PCI cards. If
you have more than one
PCI card that with the
same ’board_type’, you
can use the ’pci_bus’
and ’pci_slot’ options to
specify the particular
card you are interested
in.

interface optional

4

Linux-GPIB 3.2.11 Documentation

option name description used by interface or
device entries

required or optional

pci_slot Can be used in
conjunction with
’pci_bus’ to specify a
particular pci card.

interface optional

sad Specifies the secondary
GPIB address. Valid
values are 0, or 0x60 to
0x7e hexadecimal (96 to
126 decimal). A value
of 0 means secondary
addressing is disabled
(the default). Secondary
addresses from 0 to 30
are specified by the
library’s convention of
adding an offset of
0x60.

interface or device optional

set-bin Enables 8-bit
comparisons when
matching the
end-of-string byte,
instead of only
comparing the 7 least
significant bits. Only
affects descriptors
returned by ibfind(), and
has same effect as
setting the BIN bit in a
ibeos() call.

interface or device optional

set-eot Enables assertion of the
EOI line at the end of
writes, for descriptors
returned by ibfind(). See
ibeot().

interface or device optional

set-reos Enables the termination
of reads on reception of
the end-of-string byte
for descriptors returned
by ibfind(). Same as
setting the REOS bit in
a ibeos() call.

interface or device optional

5

Linux-GPIB 3.2.11 Documentation

option name description used by interface or
device entries

required or optional

set-xeos Enables the assertion of
EOI on transmission of
the end-of-string byte
for descriptors returned
by ibfind(). Same as
setting the XEOS bit in
a ibeos() call.

interface or device optional

timeout Sets the io timeout for a
board or device
descriptor opened
through ibfind(). The
possible settings are the
same as the constants
used by ibtmo().

interface or device optional

gpib_config

Name
gpib_config — GPIB administration program

Synopsis

gpib_config [--minor number]

gpib_config [--board-type board_type] [--dma number] [--file file_path] [--iobase
number] [--ifc] [--no-ifc] [--irq number] [--minor number] [--pad number] [--pci-bus
number] [--pci-slot number] [--sad
number] [--sre] [--no-sre] [--system-controller] [--no-system-controller]

Description

gpib_config must be run after the kernel driver module for a GPIB interface board is loaded. It performs
configuration of driver settings that cannot be performed by libgpib at runtime. This includes
configuration which requires root privilege (for example, setting the base address or irq of a board), and

6

Linux-GPIB 3.2.11 Documentation

configuration which should only be performed once and not automatically redone every time a program
using libgpib is run (for example, setting the board’s GPIB address).

The board to be configured by gpib_config is selected by the --minor option. By default, the board
settings are read from the gpib.conf configuration file. However, individual settings can be overiden by
use of command-line options (see below).

Options

-b, --iobase number

Set io base address to number for boards without plug-and-play cabability.

-d, --dma number

Specify isa dma channel number for boards without plug-and-play cabability.

-I, --init-data file_path

Upload binary initialization data (firmware) from file_path to board.

-i, --irq number

Specify irq line number for boards without plug-and-play cabability.

-f, --file file_path

Specify file path for configuration file. The values in the configuration file will be used as defaults for
unspecified options. The default configuration file is "/etc/gpib.conf".

-h, --help

Print help on options and exit.

-l, --pci-slot number

Specify pci slot number to select a specific pci board. If used, you must also specify the pci bus with
--pci-bus.

7

Linux-GPIB 3.2.11 Documentation

-m, --minor number

Configure gpib device file with minor number number (default is 0).

-p, --pad number

Specify primary gpib address. number should be in the range 0 through 30.

-s, --sad number

Specify secondary gpib address. number should be 0 (disabled) or in the range 96 through 126 (0x60
through 0x7e hexadecimal).

-t, --board-type board_type

Set board type to board_type.

-u, --pci-bus number

Specify pci bus number to select a specific pci board. If used, you must also specify the pci slot with
--pci-slot.

--[no-]ifc

Perform (or not) interface clear after bringing board online. Default is --ifc.

--[no-]sre

Assert (or not) remote enable line after bringing board online. Default is --sre.

--[no-]system-controller

Configure board as system controller (or not).

8

Linux-GPIB 3.2.11 Documentation

3. Supported Hardware

3.1. Supported Hardware Matrix

Table 2. Linux-GPIB Supported Hardware Matrix

make model kernel driver module board_type (for
/etc/gpib.conf)

Agilent (HP) 82341C hp_82341.ko hp_82341

Agilent (HP) 82341D hp_82341.ko hp_82341

Agilent (HP) 82350A agilent_82350b.ko agilent_82350b

Agilent 82350B agilent_82350b.ko agilent_82350b

Agilent 82357A agilent_82357a.ko agilent_82357a

Agilent 82357B agilent_82357a.ko agilent_82357a

Capital Equipment
Corporation

PC-488 pc2_gpib.ko pcII

Capital Equipment
Corporation

PCI-488 cec_gpib.ko cec_pci

CONTEC GP-IB(PC) pc2_gpib.ko pcIIa

Hameg HO80 pc2_gpib.ko pcII

Hameg HO80-2 ines_gpib.ko ines_isa

Hewlett Packard HP82335 hp82335.ko hp82335

Hewlett Packard HP27209 hp82335.ko hp82335

Ines GPIB-HS-NT ines_gpib.ko ines_isa

Ines GPIB for Compact PCI ines_gpib.ko ines_pci,
ines_pci_unaccel

Ines GPIB for PCI ines_gpib.ko ines_pci,
ines_pci_unaccel

Ines GPIB for PCMCIA ines_gpib.ko ines_pcmcia,
ines_pcmcia_unaccel

Ines GPIB PC/104 ines_gpib.ko ines_isa

Iotech GP488B pc2_gpib.ko pcIIa

Keithley KPCI-488 cec_gpib.ko cec_pci

Keithley MBC-488 pc2_gpib.ko pcII

Measurement
Computing (Computer
Boards)

CPCI-GPIB cb7210.ko cbi_pci,
cbi_pci_unaccel

Measurement
Computing (Computer
Boards)

ISA-GPIB cb7210.ko cbi_isa, cbi_isa_unaccel

9

Linux-GPIB 3.2.11 Documentation

make model kernel driver module board_type (for
/etc/gpib.conf)

Measurement
Computing (Computer
Boards)

ISA-GPIB/LC cb7210.ko cbi_isa_unaccel

Measurement
Computing (Computer
Boards)

ISA-GPIB-PC2A pc2_gpib.ko pcIIa (nec7210 chip),
pcIIa_cb7210 (cb7210
chip)

Measurement
Computing (Computer
Boards)

PCI-GPIB/1M cb7210.ko cbi_pci,
cbi_pci_unaccel

Measurement
Computing (Computer
Boards)

PCI-GPIB/300K cb7210.ko cbi_pci_unaccel

Measurement
Computing (Computer
Boards)

PCMCIA-GPIB cb7210.ko cbi_pcmcia,
cbi_pcmcia_unaccel

National Instruments AT-GPIB (with
NAT4882 chip)

tnt4882.ko ni_nat4882_isa,
ni_nat4882_isa_accel

National Instruments AT-GPIB (with
NEC7210 chip)

tnt4882.ko ni_nec_isa,
ni_nec_isa_accel

National Instruments AT-GPIB/TNT tnt4882.ko ni_isa, ni_isa_accel

National Instruments GPIB-USB-B ni_usb_gpib.ko ni_usb_b

National Instruments GPIB-USB-HS ni_usb_gpib.ko ni_usb_b

National Instruments PCI-GPIB tnt4882.ko ni_pci

National Instruments PCI-GPIB+ tnt4882.ko ni_pci

National Instruments PCM-GPIB tnt4882.ko ni_pci

National Instruments PXI-GPIB tnt4882.ko ni_pci

National Instruments PCII pc2_gpib.ko pcII

National Instruments PCIIa pc2_gpib.ko pcIIa

National Instruments PCII/IIa pc2_gpib.ko pcII or pcII_IIa
(depending on board
switch)

National Instruments PCMCIA-GPIB tnt4882.ko ni_pcmcia,
ni_pcmcia_accel

Quancom PCIGPIB-1 ines_gpib.ko (Ines
iGPIB 72010 chip) or
cb7210.ko
(Measurement
Computing cb7210
chip)

ines_pci or
ines_pci_unaccel (Ines
iGPIB 72010 chip),
cbi_pci_unaccel
(Measurement
Computing cb7210
chip)

10

Linux-GPIB 3.2.11 Documentation

3.2. Board-Specific Notes

3.2.1. Agilent (HP) 82341

After power-up, the Agilent 82341 boards require a firmware upload before they can be used. This can be
accomplished using the "--init-data" option of gpib_config. The firmware data can be found in the
gpib_firmware tarball available from the Linux-GPIB home page (http://linux-gpib.sourceforge.net/).
Note the C and D versions use different firmware data.

If you specify a non-zero base address in /etc/gpib.conf, the driver will assume you are trying to
configure a 82341C. Otherwise, the driver will use the kernel’s ISAPNP support to attempt to configure
an 82341D.

The 82341 does not support detection of an end-of-string character in hardware, it only automatically
detects the when the EOI line is asserted. Thus if you use the REOS flag for a read, the board’s fifos will
not be used for the transfer. This will greatly reduce the maximum transfer rate for your board (which
may or may not be noticeable depending on the device you are talking to).

3.2.2. Agilent 82350A/B

The Agilent 82350A and 82350B do not support detection of an end-of-string character during reads in
hardware, they can only detect assertion of the EOI line. Thus if you use the REOS flag for a read, the
boards’ fifos will not be used for the transfer. This will greatly reduce the maximum transfer rate for your
board (which may or may not be noticeable depending on the device you are talking to).

After power-up, the 82350A boards require a firmware upload before they can be used. This can be
accomplished using the "--init-data" option of gpib_config. The firmware data can be found in the
gpib_firmware tarball available from the Linux-GPIB home page (http://linux-gpib.sourceforge.net/).
The 82350B does not require a firmware upload.

3.2.3. Agilent 82357A/B

The Agilent 82357A and 82357B require a firmware upload (before gpib_config is run) to become
functional after being plugged in. The linux-gpib tarball contains hotplug scripts for automatically
running the fxload program to upload the firmware (and to run gpib_config after the firmware is
uploaded). However, the actual firmware data itself must be obtained seperately, as part of the
gpib_firmware tarball available from the Linux-GPIB home page (http://linux-gpib.sourceforge.net/).

The 82357A/B have a few limitation due to their firmware code:

• They cannot be run as a device, but must be the system controller.

• They cannot be assigned a secondary address.

11

Linux-GPIB 3.2.11 Documentation

• They cannot do 7 bit compares when looking for an end-of-string character (they always compare all 8
bits).

3.2.4. National Instruments GPIB-USB-B

The USB-B requires a firmware upload (before gpib_config is run) to become functional after being
plugged in. The linux-gpib tarball contains hotplug scripts for automatically running the fxload program
to upload the firmware (and to run gpib_config after the firmware is uploaded). However, the actual
firmware data itself must be obtained seperately, as part of the gpib_firmware tarball available from the
Linux-GPIB home page (http://linux-gpib.sourceforge.net/).

3.2.5. National Instruments GPIB-USB-HS

Unlike the USB-B, the USB-HS does not require a firmware upload to become functional after being
plugged in. The linux-gpib tarball contains hotplug scripts which will automatically run gpib_config
after the device is plugged in.

4. Linux-GPIB Reference

Reference for libgpib functions, macros, and constants.

4.1. Global Variables

ibcnt and ibcntl

Name
ibcnt and ibcntl — hold number of bytes transferred, or errno

Synopsis
#include <gpib/ib.h>

volatile int ibcnt;
volatile long ibcntl;

12

Linux-GPIB 3.2.11 Documentation

Description

ibcnt and ibcntl are set after IO operations to the the the number of bytes sent or received. They are also
set to the value of errno after EDVR or EFSO errors.

If you wish to avoid using a global variable, you may instead use ThreadIbcnt() or ThreadIbcntl() which
return thread-specific values.

iberr

Name
iberr — holds error code

Synopsis
#include <gpib/ib.h>

volatile int iberr;

Description

iberr is set whenever a function from the ’traditional’ or ’multidevice’ API fails with an error. The
meaning of each possible value of iberr is summarized in the following table:

Table 1. iberr error codes

constant value meaning
EDVR 0 A system call has failed.

ibcnt/ibcntl will be set to the
value of errno.

ECIC 1 Your interface board needs to be
controller-in-charge, but is not.

ENOL 2 You have attempted to write data
or command bytes, but there are
no listeners currently addressed.

13

Linux-GPIB 3.2.11 Documentation

constant value meaning
EADR 3 The interface board has failed to

address itself properly before
starting an io operation.

EARG 4 One or more arguments to the
function call were invalid.

ESAC 5 The interface board needs to be
system controller, but is not.

EABO 6 A read or write of data bytes has
been aborted, possibly due to a
timeout or reception of a device
clear command.

ENEB 7 The GPIB interface board does
not exist, its driver is not loaded,
or it is not configured properly.

EDMA 8 Not used (DMA error), included
for compatibility purposes.

EOIP 10 Function call can not proceed
due to an asynchronous IO
operation (ibrda(), ibwrta(), or
ibcmda()) in progress.

ECAP 11 Incapable of executing function
call, due the GPIB board lacking
the capability, or the capability
being disabled in software.

EFSO 12 File system error. ibcnt/ibcntl
will be set to the value of errno.

EBUS 14 An attempt to write command
bytes to the bus has timed out.

ESTB 15 One or more serial poll status
bytes have been lost. This can
occur due to too many status
bytes accumulating (through
automatic serial polling) without
being read.

ESRQ 16 The serial poll request service
line is stuck on. This can occur if
a physical device on the bus
requests service, but its GPIB
address has not been opened (via
ibdev() for example) by any
process. Thus the automatic
serial polling routines are
unaware of the device’s existence
and will never serial poll it.

14

Linux-GPIB 3.2.11 Documentation

constant value meaning
ETAB 20 This error can be returned by

ibevent(), FindLstn(), or
FindRQS(). See their
descriptions for more
information.

If you wish to avoid using a global variable, you may instead use ThreadIberr() which returns a
thread-specific value.

ibsta

Name
ibsta — holds status

Synopsis
#include <gpib/ib.h>

volatile int ibsta;

Description

ibsta is set whenever a function from the ’traditional’ or ’multidevice’ API is called. Each of the bits in
ibsta has a different meaning, summarized in the following table:

Table 1. ibsta Bits

bit value (hexadecimal) meaning used for
board/device

15

Linux-GPIB 3.2.11 Documentation

bit value (hexadecimal) meaning used for
board/device

DCAS 0x1 DCAS is set when a
board receives the
device clear command
(that is, the SDC or
DCL command byte). It
is cleared on the next
’traditional’ or
’multidevice’ function
call following ibwait()
(with DCAS set in the
wait mask), or following
a read or write (ibrd(),
ibwrt(), Receive(), etc.).
The DCAS and DTAS
bits will only be set if
the event queue is
disabled. The event
queue may be disabled
with ibconfig().

board

DTAS 0x2 DTAS is set when a
board has received a
device trigger command
(that is, the GET
command byte). It is
cleared on the next
’traditional’ or
’multidevice’ function
call following ibwait()
(with DTAS in the wait
mask). The DCAS and
DTAS bits will only be
set if the event queue is
disabled. The event
queue may be disabled
with ibconfig().

board

LACS 0x4 Board is currently
addressed as a listener.

board

TACS 0x8 Board is currently
addressed as talker.

board

ATN 0x10 The ATN line is
asserted.

board

16

Linux-GPIB 3.2.11 Documentation

bit value (hexadecimal) meaning used for
board/device

CIC 0x20 Board is
controller-in-charge, so
it is able to set the ATN
line.

board

REM 0x40 Board is in ’remote’
state.

board

LOK 0x80 Board is in ’lockout’
state.

board

CMPL 0x100 I/O operation is
complete. Useful for
determining when an
asynchronous io
operation (ibrda(),
ibwrta(), etc) has
completed.

board or device

EVENT 0x200 One or more clear,
trigger, or interface clear
events have been
received, and are
available in the event
queue (see ibevent()).
The EVENT bit will
only be set if the event
queue is enabled. The
event queue may be
enabled with ibconfig().

board

SPOLL 0x400 If this bit is enabled (see
ibconfig()), it is set
when the board is serial
polled. The SPOLL bit
is cleared when the
board requests service
(see ibrsv()) or you call
ibwait() on the board
with SPOLL in the wait
mask.

board

17

Linux-GPIB 3.2.11 Documentation

bit value (hexadecimal) meaning used for
board/device

RQS 0x800 RQS indicates that the
device has requested
service, and one or more
status bytes are available
for reading with ibrsp().
RQS will only be set if
you have automatic
serial polling enabled
(see ibconfig()).

device

SRQI 0x1000 SRQI indicates that a
device connected to the
board is asserting the
SRQ line. It is only set
if the board is the
controller-in-charge. If
automatic serial polling
is enabled (see
ibconfig()), SRQI will
generally be cleared,
since when a device
requests service it will
be automatically polled
and then unassert SRQ.

board

END 0x2000 END is set if the last io
operation ended with the
EOI line asserted, and
may be set on reception
of the end-of-string
character. The
IbcEndBitIsNormal
option of ibconfig() can
be used to configure
whether or not END
should be set on
reception of the eos
character.

board or device

TIMO 0x4000 TIMO indicates that the
last io operation or
ibwait() timed out.

board or device

18

Linux-GPIB 3.2.11 Documentation

bit value (hexadecimal) meaning used for
board/device

ERR 0x8000 ERR is set if the last
’traditional’ or
’multidevice’ function
call failed. The global
variable iberr will be set
indicate the cause of the
error.

board or device

If you wish to avoid using a global variable, you may instead use ThreadIbsta() which returns a
thread-specific value.

4.2. ’Traditional’ API Functions

ibask

Name
ibask — query configuration (board or device)

Synopsis

#include <gpib/ib.h>

int ibask(int ud, int option, int *result);

Description

Queries various configuration settings associated with the board or device descriptor ud. The option
argument specifies the particular setting you wish to query. The result of the query is written to the
location specified by result. To change the descriptor’s configuration, see ibconfig().

Table 1. ibask options

19

Linux-GPIB 3.2.11 Documentation

option value (hexadecimal) result of query used for
board/device

IbaPAD 0x1 GPIB primary address board or device

IbaSAD 0x2 GPIB secondary address
(0 for none, 0x60 to
0x7e for secondary
addresses 0 to 30)

board or device

IbaTMO 0x3 Timeout setting for io
operations (a number
from 0 to 17). See
ibmto().

board or device

IbaEOT 0x4 Nonzero if EOI is
asserted with last byte
on writes. See ibeot().

IbaPPC 0x5 Parallel poll
configuration. See
ibppc().

board

IbaREADDR 0x6 Useless, included for
compatibility only.

device

IbaAUTOPOLL 0x7 Nonzero if automatic
serial polling is enabled.

board

IbaCICPROT 0x8 Useless, included for
compatibility only.

board

IbaSC 0xa Nonzero if board is
system controller. See
ibrsc().

board

IbaSRE 0xb Nonzero if board
autmatically asserts
REN line when it
becomes the system
controller. See ibsre().

board

IbaEOSrd 0xc Nonzero if termination
of reads on reception of
the end-of-string
character is enabled. See
ibeos(), in particular the
REOS bit.

board or device

IbaEOSwrt 0xd Nonzero if EOI is
asserted whenever
end-of-string character
is sent. See ibeos(), in
particular the XEOS bit.

board or device

20

Linux-GPIB 3.2.11 Documentation

option value (hexadecimal) result of query used for
board/device

IbaEOScmp 0xe Nonzero if all 8 bits are
used to match
end-of-string character.
Zero if only least
significant 7 bits are
used. See ibeos(), in
particular the BIN bit.

board or device

IbaEOSchar 0xf The end-of-string byte. board or device

IbaPP2 0x10 Nonzero if in local
parallel poll configure
mode. Zero if in remote
parallel poll configure
mode.

board

IbaTIMING 0x11 Number indicating T1
delay. 1 for 2
microseconds, 2 for 500
nanoseconds, 3 for 350
nanoseconds. The
values are declared in
the header files as the
constants
T1_DELAY_2000ns,
T1_DELAY_500ns, and
T1_DELAY_350ns.

board

IbaReadAdjust 0x13 Nonzero if byte pairs are
automatically swapped
during reads.

board or device

IbaWriteAdjust 0x14 Nonzero if byte pairs are
automatically swapped
during writes.

board or device

IbaEventQueue 0x15 Nonzero if event queue
is enabled.

board

IbaSPollBit 0x16 Nonzero if the use of the
SPOLL bit in ibsta is
enabled.

board

IbaSendLLO 0x17 Nonzero if devices
connected to this board
are automatically put
into local lockout mode
when brought online
with ibfind() or ibdev().

board

21

Linux-GPIB 3.2.11 Documentation

option value (hexadecimal) result of query used for
board/device

IbaSPollTime 0x18 Timeout for serial polls.
The value of the result is
between 0 and 17, and
has the same meaning as
in ibtmo().

device

IbaPPollTime 0x18 Timeout for parallel
polls. The value of the
result is between 0 and
17, and has the same
meaning as in ibtmo().

board

IbaEndBitIsNormal 0x1a Nonzero if END bit of
ibsta is set on reception
of end-of-string
character or EOI. Zero if
END bit is only set on
EOI.

board or device

IbaUnAddr 0x1b Nonzero if UNT
(untalk) and UNL
(unlisten) commands are
automatically sent after
a completed io operation
using this descriptor.

device

IbaHSCableLength 0x1f Useless, included only
for compatibility.

board

IbaIst 0x20 Individual status bit,
a.k.a. ’ist’.

board

IbaRsv 0x21 The current status byte
this board will use to
respond to serial polls.

board

IbaBNA 0x200 Board index (minor
number) of interface
board which is the
controller-in-charge of
this device’s GPIB bus.

device

Iba7BitEOS 0x1000 Nonzero if board
supports 7 bit EOS
comparisons. See
ibeos(), in particular the
BIN bit. This is a
Linux-GPIB extension.

board

22

Linux-GPIB 3.2.11 Documentation

Return value

The value of ibsta is returned.

ibbna

Name
ibbna — change access board (device)

Synopsis

#include <gpib/ib.h>

int ibbna(int ud, const char *name);

Description

ibbna() changes the GPIB interface board used to access the device specified by ud. Subsequent device
level calls using the descriptor ud will assume the device is connected to the interface board specified by
name. If you wish to specify a device’s new access board by board index instead of name, you can use
the IbcBNA option of ibconfig().

The name of a board can be specified in the configuration file gpib.conf.

On success, iberr is set to the board index of the device’s old access board.

Return value

The value of ibsta is returned.

23

Linux-GPIB 3.2.11 Documentation

ibcac

Name
ibcac — assert ATN (board)

Synopsis

#include <gpib/ib.h>

int ibcac(int ud, int synchronous);

Description

ibcac() causes the board specified by the board descriptor ud to become active controller by asserting the
ATN line. The board must be controller-in-change in order to assert ATN. If synchronous is nonzero,
then the board will wait for a data byte on the bus to complete its transfer before asserting ATN. If the
synchronous attempt times out, or synchronous is zero, then ATN will be asserted immediately.

It is generally not necessary to call ibcac(). It is provided for advanced users who want direct, low-level
access to the GPIB bus.

Return value

The value of ibsta is returned.

ibclr

Name
ibclr — clear device (device)

Synopsis

#include <gpib/ib.h>

int ibclr(int ud);

24

Linux-GPIB 3.2.11 Documentation

Description

ibclr() sends the clear command to the device specified by ud.

Return value

The value of ibsta is returned.

ibcmd

Name
ibcmd — write command bytes (board)

Synopsis

#include <gpib/ib.h>

int ibcmd(int ud, const void *commands, long num_bytes);

Description

ibcmd() writes the command bytes contained in the array commands to the bus. The number of bytes
written from the array is specified by num_bytes. The ud argument is a board descriptor, and the board
must be controller-in-charge. Most of the possible command bytes are declared as constants in the header
files. In particular, the constants GTL, SDC, PPConfig, GET, TCT, LLO, DCL, PPU, SPE, SPD, UNL,
UNT,and PPD are available. Additionally, the inline functions MTA(), MLA(), MSA(), and PPE_byte()
are available for producing ’my talk address’, ’my listen address’, ’my secondary address’, and ’parallel
poll enable’ command bytes respectively.

It is generally not necessary to call ibcmd(). It is provided for advanced users who want direct, low-level
access to the GPIB bus.

25

Linux-GPIB 3.2.11 Documentation

Return value

The value of ibsta is returned.

ibcmda

Name
ibcmda — write command bytes asynchronously (board)

Synopsis

#include <gpib/ib.h>

int ibcmda(int ud, const void *commands, long num_bytes);

Description

ibcmda() is similar to ibcmd() except it operates asynchronously. ibcmda() does not wait for the sending
of the command bytes to complete, but rather returns immediately.

While an asynchronous operation is in progress, most library functions will fail with an EOIP error. In
order to sucessfully complete an asynchronous operation, you must call ibwait() until the CMPL bit is set
ibsta. Asynchronous operations may also be aborted with an ibstop() or ibonl() call.

Return value

The value of ibsta is returned.

ibconfig

Name
ibconfig — change configuration (board or device)

26

Linux-GPIB 3.2.11 Documentation

Synopsis

#include <gpib/ib.h>

int ibconfig(int ud, int option, int setting);

Description

Changes various configuration settings associated with the board or device descriptor ud. The option
argument specifies the particular setting you wish to modify. The setting argument specifies the
option’s new configuration. To query the descriptor’s configuration, see ibask().

Table 1. ibconfig options

option value (hexadecimal) effect used for
board/device

IbcPAD 0x1 Sets GPIB primary address.
Same as ibpad()

board or device

IbcSAD 0x2 Sets GPIB secondary
address. Same as ibsad()

board or device

IbcTMO 0x3 Sets timeout for io
operations. Same as
ibmto().

board or device

IbcEOT 0x4 If setting is nonzero,
EOI is asserted with last
byte on writes. Same as
ibeot().

IbcPPC 0x5 Sets parallel poll
configuration. Same as
ibppc().

board

IbcREADDR 0x6 Useless, included for
compatibility only.

device

IbcAUTOPOLL 0x7 If setting is nonzero
then automatic serial
polling is enabled.

board

IbcCICPROT 0x8 Useless, included for
compatibility only.

board

IbcSC 0xa If setting is nonzero,
board becomes system
controller. Same as
ibrsc().

board

27

Linux-GPIB 3.2.11 Documentation

option value (hexadecimal) effect used for
board/device

IbcSRE 0xb If setting is nonzero
then board asserts REN
line. Otherwise REN is
unasserted. Same as
ibsre().

board

IbcEOSrd 0xc If setting is nonzero then
reads are terminated on
reception of the
end-of-string character.
See ibeos(), in particular
the REOS bit.

board or device

IbcEOSwrt 0xd If setting is nonzero
then EOI is asserted
whenever the
end-of-string character
is sent. See ibeos(), in
particular the XEOS bit.

board or device

IbcEOScmp 0xe If setting is nonzero
then all 8 bits are used
to match the
end-of-string character.
Otherwise only the least
significant 7 bits are
used. See ibeos(), in
particular the BIN bit.

board or device

IbcEOSchar 0xf Sets the end-of-string
byte. See ibeos().

board or device

28

Linux-GPIB 3.2.11 Documentation

option value (hexadecimal) effect used for
board/device

IbcPP2 0x10 If setting is nonzero
then the board is put
into local parallel poll
configure mode, and
will not change its
parallel poll
configuration in
response to receiving
’parallel poll enable’
command bytes from
the controller-in-charge.
Otherwise the board is
put in remote parallel
poll configure mode.
Some older hardware
does not support local
parallel poll configure
mode.

board

IbcTIMING 0x11 Sets the T1 delay. Use
setting of 1 for 2
microseconds, 2 for 500
nanoseconds, or 3 for
350 nanoseconds. These
values are declared in
the header files as the
constants
T1_DELAY_2000ns,
T1_DELAY_500ns, and
T1_DELAY_350ns. A 2
microsecond T1 delay is
safest, but will limit
maximum transfer
speeds to a few hundred
kilobytes per second.

board

IbcReadAdjust 0x13 If setting is nonzero
then byte pairs are
automatically swapped
during reads. Presently,
this feature is
unimplemented.

board or device

29

Linux-GPIB 3.2.11 Documentation

option value (hexadecimal) effect used for
board/device

IbcWriteAdjust 0x14 If setting is nonzero
then byte pairs are
automatically swapped
during writes. Presently,
this feature is
unimplemented.

board or device

IbcEventQueue 0x15 If setting is nonzero
then the event queue is
enabled. The event
queue is disabled by
default.

board

IbcSPollBit 0x16 If the setting is nonzero
then the use of the
SPOLL bit in ibsta is
enabled.

board

IbcSendLLO 0x17 If the setting is nonzero
then devices connected
to this board are
automatically put into
local lockout mode
when brought online
with ibfind() or ibdev().

board

IbcSPollTime 0x18 Sets timeout for serial
polls. The setting must
be between 0 and 17,
which correspond to the
same time periods as in
ibtmo().

device

IbcPPollTime 0x18 Sets timeout for parallel
polls. The setting must
be between 0 and 17,
which correspond to the
same time periods as in
ibtmo().

board

IbcEndBitIsNormal 0x1a If setting is nonzero then
the END bit of ibsta is
set on reception of the
end-of-string character
or EOI (default).
Otherwise END bit is
only set on EOI.

board or device

30

Linux-GPIB 3.2.11 Documentation

option value (hexadecimal) effect used for
board/device

IbcUnAddr 0x1b If setting is nonzero then
UNT (untalk) and UNL
(unlisten) commands are
automatically sent after
a completed io operation
using this descriptor.
This option is off by
default.

device

IbcHSCableLength 0x1f Useless, included only
for compatibility.

board

IbcIst 0x20 Sets the individual
status bit, a.k.a. ’ist’.
Same as ibist().

board

IbcRsv 0x21 Sets the current status
byte this board will use
to respond to serial
polls. Same as ibrsv().

board

IbcBNA 0x200 Changes the GPIB
interface board used to
access a device. The
setting specifies the
board index of the new
access board. This
configuration option is
similar to ibbna() except
the new board is
specified by its board
index instead of a name.

device

Return value

The value of ibsta is returned.

31

Linux-GPIB 3.2.11 Documentation

ibdev

Name
ibdev — open a device (device)

Synopsis

#include <gpib/ib.h>

int ibdev(int board_index, int pad, int sad, int timeout, int send_eoi, int
eos);

Description

ibdev() is used to obtain a device descriptor, which can then be used by other functions in the library. The
argument board_index specifies which GPIB interface board the device is connected to. The pad and
sad arguments specify the GPIB address of the device to be opened (see ibpad() and ibsad()). The
timeout for io operations is specified by timeout (see ibtmo()). If send_eoi is nonzero, then the EOI
line will be asserted with the last byte sent during writes (see ibeot()). Finally, the eos argument specifies
the end-of-string character and whether or not its reception should terminate reads (see ibeos()).

Return value

If sucessful, returns a (non-negative) device descriptor. On failure, -1 is returned.

ibeos

Name
ibeos — set end-of-string mode (board or device)

Synopsis

#include <gpib/ib.h>

int ibeos(int ud, int eosmode);

32

Linux-GPIB 3.2.11 Documentation

Description

ibeos() is used to set the end-of-string character and mode. The least significant 8 bits of eosmode
specify the eos character. You may also bitwise-or one or more of the following bits to set the eos mode:

Table 1. End-of-String Mode Bits

constant value (hexadecimal) meaning
REOS 0x400 Enable termination of reads

when eos character is received.

XEOS 0x800 Assert the EOI line whenever the
eos character is sent during
writes.

BIN 0x1000 Match eos character using all 8
bits (instead of only looking at
the 7 least significant bits).

Return value

The value of ibsta is returned.

ibeot

Name
ibeot — assert EOI with last data byte (board or device)

Synopsis

#include <gpib/ib.h>

int ibeot(int ud, int send_eoi);

33

Linux-GPIB 3.2.11 Documentation

Description

If send_eoi is non-zero, then the EOI line will be asserted with the last byte sent by calls to ibwrt() and
related functions.

Return value

The value of ibsta is returned.

ibevent

Name
ibevent — get events from event queue (board)

Synopsis

#include <gpib/ib.h>

int ibevent(int ud, short *event);

Description

ibevent() is used to obtain the oldest event stored in the event queue of the board specified by the board
descriptor ud. The EVENT bit of ibsta indicates that the event queue contains 1 or more events. An event
may be a clear command, a trigger command, or reception of an interface clear. The type of event is
stored in the location specified by event and may be set to any of the following values:

Table 1. events

constant value description
EventNone 0 The board’s event queue is empty

EventDevTrg 1 The board has received a trigger
command from the
controller-in-charge.

34

Linux-GPIB 3.2.11 Documentation

constant value description
EventDevClr 2 The board has received a clear

command from the
controller-in-charge.

EventIFC 3 The board has received an
interface clear from the system
controller. Note, some models of
GPIB interface board lack the
ability to report interface clear
events.

The event queue is disabled by default. It may be enabled by a call to ibconfig(). Each interface board has
a single event queue which is shared across all processes and threads. So, only one process can retrieve
any given event from the queue. Also, the queue is of finite size so events may be lost (ibevent() will
return an error) if it is neglected too long.

Return value

The value of ibsta is returned.

ibfind

Name
ibfind — open a board or device (board or device)

Synopsis

#include <gpib/ib.h>

int ibfind(const char *name);

Description

ibfind() returns a board or device descriptor based on the information found in the configuration file. It is
not required to use this function, since device descriptors can be obtained with ibdev() and the ’board

35

Linux-GPIB 3.2.11 Documentation

index’ (minor number in the configuration file) can be used directly as a board descriptor.

Return value

If sucessful, returns a (non-negative) board or device descriptor. On failure, -1 is returned.

ibgts

Name
ibgts — release ATN (board)

Synopsis

#include <gpib/ib.h>

int ibgts(int ud, int shadow_handshake);

Description

ibgts() is the complement of ibcac(), and causes the board specified by the board descriptor ud to go to
standby by releasing the ATN line. The board must be controller-in-change to change the state of the
ATN line. If shadow_handshake is nonzero, then the board will handshake any data bytes it receives
until it encounters an EOI or end-of-string character, or the ATN line is asserted again. The received data
is discarded.

It is generally not necessary to call ibgts(). It is provided for advanced users who want direct, low-level
access to the GPIB bus.

Return value

The value of ibsta is returned.

36

Linux-GPIB 3.2.11 Documentation

ibist

Name
ibist — set individual status bit (board)

Synopsis

#include <gpib/ib.h>

int ibist(int ud, int ist);

Description

If ist is nonzero, then the individual status bit of the board specified by the board descriptor ud is set. If
ist is zero then the individual status bit is cleared. The individual status bit is sent by the board in
response to parallel polls.

On success, iberr is set to the previous ist value.

Return value

The value of ibsta is returned.

iblines

Name
iblines — monitor bus lines (board)

Synopsis

#include <gpib/ib.h>

int iblines(int ud, short *line_status);

37

Linux-GPIB 3.2.11 Documentation

Description

iblines() is used to obtain the status of the control and handshaking bus lines of the bus. The board used
to monitor the bus is specified by the ud argument, and the status of the various bus lines are written to
the location specified by line_status.

Some older chips are not capable of reporting the status of the bus lines, so each line has two
corresponding bits in line_status. One bit indicates if the board can monitor the line, and the other bit
indicates the line’s state. The meaning of the line_status bits are as follows:

Table 1. line status bits

constant value description
ValidDAV 0x1 The BusDAV bit is valid.

ValidNDAC 0x2 The BusNDAC bit is valid.

ValidNRFD 0x4 The BusNRFD bit is valid.

ValidIFC 0x8 The BusIFC bit is valid.

ValidREN 0x10 The BusREN bit is valid.

ValidSRQ 0x20 The BusSRQ bit is valid.

ValidATN 0x40 The BusATN bit is valid.

ValidEOI 0x80 The BusEOI bit is valid.

BusDAV 0x100 Set/cleared if the DAV line is
asserted/unasserted.

BusNDAC 0x200 Set/cleared if the NDAC line is
asserted/unasserted.

BusNRFD 0x400 Set/cleared if the NRFD line is
asserted/unasserted.

BusIFC 0x800 Set/cleared if the IFC line is
asserted/unasserted.

BusREN 0x1000 Set/cleared if the REN line is
asserted/unasserted.

BusSRQ 0x2000 Set/cleared if the SRQ line is
asserted/unasserted.

BusATN 0x4000 Set/cleared if the ATN line is
asserted/unasserted.

BusEOI 0x8000 Set/cleared if the EOI line is
asserted/unasserted.

Return value

The value of ibsta is returned.

38

Linux-GPIB 3.2.11 Documentation

ibln

Name
ibln — check if listener is present (board or device)

Synopsis

#include <gpib/ib.h>

int ibln(int ud, int pad, int sad, short *found_listener);

Description

ibln() checks for the presence of a device, by attempting to address it as a listener. ud specifies the GPIB
interface board which should check for listeners. If ud is a device descriptor, then the device’s access
board is used.

The GPIB address to check is specified by the pad and sad arguments. pad specifies the primary
address, 0 through 30 are valid values. sad gives the secondary address, and may be a value from 0x60
through 0x7e (96 through 126), or one of the constants NO_SAD or ALL_SAD. NO_SAD indicates that
no secondary addressing is to be used, and ALL_SAD indicates that all secondary addresses should be
checked.

If the board finds a listener at the specified GPIB address(es), then the variable specified by the pointer
found_listener is set to a nonzero value. If no listener is found, the variable is set to zero.

The board must be controller-in-charge to perform this function. Also, it must have the capability to
monitor the NDAC bus line (see iblines()).

Return value

The value of ibsta is returned.

39

Linux-GPIB 3.2.11 Documentation

ibloc

Name
ibloc — go to local mode (board or device)

Synopsis

#include <gpib/ib.h>

int ibloc(int ud);

Description

Causes the board or device specified by the descriptor ud to go to local mode. If ud is a board descriptor,
and the board is in local lockout, then the function will fail.

Note, if the system controller is asserting the REN line, then devices on the bus will return to remote
mode the next time they are addressed by the controller in charge.

Return value

The value of ibsta is returned.

ibonl

Name
ibonl — close or reinitialize descriptor (board or device)

Synopsis

#include <gpib/ib.h>

int ibonl(int ud, int online);

40

Linux-GPIB 3.2.11 Documentation

Description

If the online is zero, then ibonl() frees the resources associated with the board or device descriptor ud.
The descriptor cannot be used again after the ibonl() call.

If the online is nonzero, then all the settings associated with the descriptor (GPIB address,
end-of-string mode, timeout, etc.) are reset to their ’default’ values. The ’default’ values are the settings
the descriptor had when it was first obtained with ibdev() or ibfind().

Return value

The value of ibsta is returned.

ibpad

Name
ibpad — set primary GPIB address (board or device)

Synopsis

#include <gpib/ib.h>

int ibpad(int ud, int pad);

Description

ibpad() sets the GPIB primary address to pad for the device or board specified by the descriptor ud. If
ud is a device descriptor, then the setting is local to the descriptor (it does not affect the behaviour of
calls using other descriptors, even if they refer to the same physical device). If ud is a board descriptor,
then the board’s primary address is changed immediately, which is a global change affecting anything
(even other processes) using the board. Valid GPIB primary addresses are in the range from 0 to 30.

Return value

The value of ibsta is returned.

41

Linux-GPIB 3.2.11 Documentation

ibpct

Name
ibpct — pass control (board)

Synopsis

#include <gpib/ib.h>

int ibpct(int ud);

Description

ibpct() passes control to the device specified by the device descriptor ud. The device becomes the new
controller-in-charge.

Return value

The value of ibsta is returned.

ibppc

Name
ibppc — parallel poll configure (board or device)

Synopsis

#include <gpib/ib.h>

int ibppc(int ud, int configuration);

42

Linux-GPIB 3.2.11 Documentation

Description

Configures the parallel poll response of the device or board specified by ud. The configuration
should either be set to the ’PPD’ constant to disable parallel poll responses, or set to the return value of
the PPE_byte() inline function to enable and configure the parallel poll response.

After configuring the parallel poll response of devices on a bus, you may use ibrpp() to parallel poll the
devices.

Return value

The value of ibsta is returned.

ibrd

Name
ibrd — read data bytes (board or device)

Synopsis

#include <gpib/ib.h>

int ibrd(int ud, void *buffer, long num_bytes);

Description

ibrd() is used to read data bytes from a device or board. The argument ud can be either a device or board
descriptor. Up to num_bytes bytes are read into the user-supplied array buffer. The read may be
terminated by a timeout occuring(see ibtmo()), the talker asserting the EOI line, the board receiving the
end-of-string character (see ibeos()), receiving a device clear command, or receiving an interface clear.

If ud is a device descriptor, then the library automatically handles addressing the device as talker and the
interface board as listener before performing the read.

43

Linux-GPIB 3.2.11 Documentation

If ud is a board descriptor, no addressing is performed and the board must be addressed as a listener by
the controller-in-charge.

After the ibrd() call, ibcnt and ibcntl are set to the number of bytes read.

Return value

The value of ibsta is returned.

ibrda

Name
ibrda — read data bytes asynchronously (board or device)

Synopsis

#include <gpib/ib.h>

int ibrda(int ud, void *buffer, long num_bytes);

Description

ibrda() is similar to ibrd() except it operates asynchronously. ibrda() does not wait for the reception of the
data bytes to complete, but rather returns immediately.

While an asynchronous operation is in progress, most library functions will fail with an EOIP error. In
order to sucessfully complete an asynchronous operation, you must call ibwait() until the CMPL bit is set
ibsta. Asynchronous operations may also be aborted with an ibstop() or ibonl() call.

Return value

The value of ibsta is returned.

44

Linux-GPIB 3.2.11 Documentation

ibrdf

Name
ibrdf — read data bytes to file (board or device)

Synopsis

#include <gpib/ib.h>

int ibrdf(int ud, const char *file_path);

Description

ibrdf() is similar to ibrd() except that the data bytes read are stored in a file instead of an array in
memory. file_path specifies the save file. If the file already exists, the data will be appended onto the
end of the file.

Return value

The value of ibsta is returned.

ibrpp

Name
ibrpp — perform a parallel poll (board or device)

Synopsis

#include <gpib/ib.h>

int ibrpp(int ud, char *ppoll_result);

45

Linux-GPIB 3.2.11 Documentation

Description

ibrpp() causes the interface board to perform a parallel poll, and stores the resulting parallel poll byte in
the location specified by ppoll_result. Bits 0 to 7 of the parallel poll byte correspond to the dio lines
1 to 8, with a 1 indicating the corresponding dio line is asserted. The devices on the bus you wish to poll
should be configured beforehand with ibppc(). The board which performs the parallel poll must be
controller-in-charge, and is specified by the descriptor ud. If ud is a device descriptor instead of a board
descriptor, the device’s access board performs the parallel poll.

Return value

The value of ibsta is returned.

ibrsc

Name
ibrsc — request system control (board)

Synopsis

#include <gpib/ib.h>

int ibrsc(int ud, int request_control);

Description

If request_control is nonzero, then the board specified by the board descriptor ud is made system
controller. If request_control is zero, then the board releases system control.

The system controller has the ability to assert the REN and IFC lines, and is typically also the
controller-in-charge. A GPIB bus may not have more than one system controller.

Return value

The value of ibsta is returned.

46

Linux-GPIB 3.2.11 Documentation

ibrsp

Name
ibrsp — conduct serial poll (device)

Synopsis

#include <gpib/ib.h>

int ibrsp(int ud, char *result);

Description

ibrsp() serial polls the device specified by ud. The status byte is stored in the location specified by
result.

Return value

The value of ibsta is returned.

ibrsv

Name
ibrsv — request service (board)

Synopsis

#include <gpib/ib.h>

int ibrsv(int ud, int status_byte);

47

Linux-GPIB 3.2.11 Documentation

Description

The serial poll response byte of the board specified by the board descriptor ud is set to status_byte. If
the request service bit (0x40 hexadecimal) in status_byte is set, then the board will also request
service by asserting the RQS line.

Return value

The value of ibsta is returned.

ibsad

Name
ibsad — set secondary GPIB address (board or device)

Synopsis

#include <gpib/ib.h>

int ibsad(int ud, int sad);

Description

ibsad() sets the GPIB secondary address of the device or board specified by the descriptor ud. If ud is a
device descriptor, then the setting is local to the descriptor (it does not affect the behaviour of calls using
other descriptors, even if they refer to the same physical device). If ud is a board descriptor, then the
board’s secondary address is changed immediately, which is a global change affecting anything (even
other processes) using the board.

This library follows NI’s unfortunate convention of adding 0x60 hexadecimal (96 decimal) to secondary
addresses. That is, if you wish to set the secondary address to 3, you should set sad to 0x63. Setting sad

to 0 disables the use of secondary addressing. Valid GPIB secondary addresses are in the range from 0 to
30 (which correspond to sad values of 0x60 to 0x7e).

48

Linux-GPIB 3.2.11 Documentation

Return value

The value of ibsta is returned.

ibsic

Name
ibsic — perform interface clear (board)

Synopsis

#include <gpib/ib.h>

int ibsic(int ud);

Description

ibsic() resets the GPIB bus by asserting the ’interface clear’ (IFC) bus line for a duration of at least 100
microseconds. The board specified by ud must be the system controller in order to assert IFC. The
interface clear causes all devices to untalk and unlisten, puts them into serial poll disabled state (don’t
worry, you will still be able to conduct serial polls), and the board becomes controller-in-charge.

Return value

The value of ibsta is returned.

ibsre

Name
ibsre — set remote enable (board)

49

Linux-GPIB 3.2.11 Documentation

Synopsis

#include <gpib/ib.h>

int ibsre(int ud, int enable);

Description

If enable is nonzero, then the board specified by the board descriptor ud asserts the REN line. If
enable is zero, the REN line is unasserted. The board must be the system controller.

Return value

The value of ibsta is returned.

ibstop

Name
ibstop — abort asynchronous i/o operation (board or device)

Synopsis

#include <gpib/ib.h>

int ibstop(int ud);

Description

ibstop() aborts an asynchronous i/o operation (for example, one started with ibcmda(), ibrda(), or
ibwrta()).

The return value of ibstop() is counter-intuitive. On successfully aborting an asynchronous operation, the
ERR bit is set in ibsta, and iberr is set to EABO. If the ERR bit is not set in ibsta, then there was no
asynchronous i/o operation in progress. If the function failed, the ERR bit will be set and iberr will be set
to some value other than EABO.

50

Linux-GPIB 3.2.11 Documentation

Return value

The value of ibsta is returned.

ibtmo

Name
ibtmo — adjust io timeout (board or device)

Synopsis

#include <gpib/ib.h>

int ibtmo(int ud, int timeout);

Description

ibtmo() sets timeout for IO operations performed using the board or device descriptor ud. The actual
amount of time before a timeout occurs may be greater than the period specified, but never less.
timeout is specified by using one of the following constants:

Table 1. Timeout constants

constant value timeout
TNONE 0 Never timeout.

T10us 1 10 microseconds

T30us 2 30 microseconds

T100us 3 100 microseconds

T300us 4 300 microseconds

T1ms 5 1 millisecond

T3ms 6 3 milliseconds

T10ms 7 10 milliseconds

T30ms 8 30 milliseconds

T100ms 9 100 milliseconds

T300ms 10 300 milliseconds

51

Linux-GPIB 3.2.11 Documentation

constant value timeout
T1s 11 1 second

T3s 12 3 seconds

T10s 13 10 seconds

T30s 14 30 seconds

T100s 15 100 seconds

T300s 16 300 seconds

T1000s 17 1000 seconds

Return value

The value of ibsta is returned.

ibtrg

Name
ibtrg — trigger device (device)

Synopsis

#include <gpib/ib.h>

int ibtrg(int ud);

Description

ibtrg() sends a GET (group execute trigger) command byte to the device specified by the device
descriptor ud.

Return value

The value of ibsta is returned.

52

Linux-GPIB 3.2.11 Documentation

ibwait

Name
ibwait — wait for event (board or device)

Synopsis

#include <gpib/ib.h>

int ibwait(int ud, int status_mask);

Description

ibwait() will sleep until one of the conditions specified in status_mask is true. The meaning of the bits
in status_mask are the same as the bits of the ibsta status variable.

If status_mask is zero, then ibwait() will return immediately. This is useful if you simply wish to get
an updated ibsta.

Return value

The value of ibsta is returned.

ibwrt

Name
ibwrt — write data bytes (board or device)

Synopsis

#include <gpib/ib.h>

53

Linux-GPIB 3.2.11 Documentation

int ibwrt(int ud, const void *data, long num_bytes);

Description

ibwrt() is used to write data bytes to a device or board. The argument ud can be either a device or board
descriptor. num_bytes specifies how many bytes are written from the user-supplied array data. EOI
may be asserted with the last byte sent or when the end-of-string character is sent (see ibeos() and
ibeot()). The write operation may be interrupted by a timeout (see ibtmo()), the board receiving a device
clear command, or receiving an interface clear.

If ud is a device descriptor, then the library automatically handles addressing the device as listener and
the interface board as talker, before sending the data bytes onto the bus.

If ud is a board descriptor, the board simply writes the data onto the bus. The controller-in-charge must
address the board as talker.

After the ibwrt() call, ibcnt and ibcntl are set to the number of bytes written.

Return value

The value of ibsta is returned.

ibwrta

Name
ibwrta — write data bytes asynchronously (board or device)

Synopsis

#include <gpib/ib.h>

int ibwrta(int ud, const void *buffer, long num_bytes);

54

Linux-GPIB 3.2.11 Documentation

Description

ibwrta() is similar to ibwrt() except it operates asynchronously. ibwrta() does not wait for the sending of
the data bytes to complete, but rather returns immediately.

While an asynchronous operation is in progress, most library functions will fail with an EOIP error. In
order to sucessfully complete an asynchronous operation, you must call ibwait() and until the CMPL bit
is set ibsta. Asynchronous operations may also be aborted with an ibstop() or ibonl() call.

Return value

The value of ibsta is returned.

ibwrtf

Name
ibwrtf — write data bytes from file (board or device)

Synopsis

#include <gpib/ib.h>

int ibwrtf(int ud, const char *file_path);

Description

ibwrtf() is similar to ibwrt() except that the data to be written is taken from a file instead of an array in
memory. file_path specifies the file, which is written byte for byte onto the bus.

Return value

The value of ibsta is returned.

55

Linux-GPIB 3.2.11 Documentation

4.3. "Multidevice" API Functions

The "Multidevice" API functions provide similar functionality to the "Traditional" API functions.
However, some of the "multidevice" functions can be to be performed on multiple devices
simultaneously. For example, SendList() can be used to write a message to multiple devices. Such
functions take an array of Addr4882_t as an argument. The end of the array is specified by setting the last
element to the constant NOADDR.

AllSPoll

Name
AllSPoll — serial poll multiple devices

Synopsis

#include <gpib/ib.h>

void AllSPoll(int board_desc, Addr4882_t *addressList, short *resultList);
void AllSpoll(int board_desc, const Addr4882_t *addressList, short

*resultList);

Description

AllSPoll() causes the interface board specified by board_desc to serial poll all the GPIB addresses
specified in the addressList array. The results of the serial polls are stored into resultList. If you
only wish to serial poll a single device, ReadStatusByte() or ibrsp() may be more convenient.

This function may also be invoked with the alternate capitalization ’AllSpoll’ for compatibility with NI’s
library.

DevClear

Name
DevClear — clear a device

56

Linux-GPIB 3.2.11 Documentation

Synopsis

#include <gpib/ib.h>

void DevClear(int board_desc, Addr4882_t address);

Description

DevClear() causes the interface board specified by board_desc to send the clear command to the GPIB
addresses specified by address. The results of the serial polls are stored into resultList. If you wish
to clear multiple devices simultaneously, use DevClearList()

DevClearList

Name
DevClearList — clear multiple devices

Synopsis

#include <gpib/ib.h>

void DevClearList(int board_desc, const Addr4882_t addressList[]);

Description

DevClear() causes the interface board specified by board_desc to send the clear command
simultaneously to all the GPIB addresses specified by the addressList array. If addressList is
empty or NULL, then the clear command is sent to all devices on the bus. If you only wish to clear a
single device, DevClear() or ibclr() may be slightly more convenient.

57

Linux-GPIB 3.2.11 Documentation

EnableLocal

Name
EnableLocal — put devices into local mode.

Synopsis

#include <gpib/ib.h>

void EnableLocal(int board_desc, const Addr4882_t addressList[]);

Description

EnableLocal() addresses all of the devices in the addressList array as listeners then sends the GTL
(go to local) command byte, causing them to enter local mode. This requires that the board is the
controller-in-charge. Note that while the REN (remote enable) bus line is asserted, the devices will return
to remote mode the next time they are addressed.

If addressList is empty or NULL, then the REN line is unasserted and all devices enter local mode.
The board must be system controller to change the state of the REN line.

EnableRemote

Name
EnableRemote — put devices into remote mode.

Synopsis

#include <gpib/ib.h>

void EnableRemote(int board_desc, const Addr4882_t addressList[]);

58

Linux-GPIB 3.2.11 Documentation

Description

EnableRemote() asserts the REN (remote enable) line, and addresses all of the devices in the
addressList array as listeners (causing them to enter remote mode). The board must be system
controller.

FindLstn

Name
FindLstn — find devices

Synopsis

#include <gpib/ib.h>

void FindLstn(int board_desc, const Addr4882_t padList[], Addr4882_t
resultList[], int maxNumResults);

Description

FindLstn() will check the primary addresses in the padList array for devices. The GPIB addresses of all
devices found will be stored in the resultList array, and ibcnt will be set to the number of devices
found. The maxNumResults parameter limits the maximum number of results that will be returned, and
is usually set to the number of elements in the resultList array. If more than maxNumResults

devices are found, an ETAB error is returned in iberr. The padList should consist of primary addresses
only, with no secondary addresses (all possible secondary addresses will be checked as necessary).

Your GPIB board must have the capability to monitor the NDAC bus line in order to use this function
(see iblines).

59

Linux-GPIB 3.2.11 Documentation

FindRQS

Name
FindRQS — find device requesting service and read its status byte

Synopsis

#include <gpib/ib.h>

void FindRQS(int board_desc, const Addr4882_t addressList[], short *status);

Description

FindRQS will serial poll the GPIB addresses specified in the addressList array until it finds a device
requesting service. The status byte of the device requesting service is stored in the location specified by
status. The addressList array index of the device requesting service is returned in ibcnt. If no device
requesting service is found, an ETAB error is returned in iberr.

PassControl

Name
PassControl — make device controller-in-charge

Synopsis

#include <gpib/ib.h>

void PassControl(int board_desc, const Addr4882_t address);

Description

PassControl() causes the board specified by board_desc to pass control to the device specified by
address. On success, the device becomes the new controller-in-charge.

60

Linux-GPIB 3.2.11 Documentation

PPoll

Name
PPoll — parallel poll devices

Synopsis

#include <gpib/ib.h>

void PPoll(int board_desc, short *result);

Description

PPoll() is similar to the ’traditional’ API function ibrpp(). It causes the interface board to perform a
parallel poll, and stores the parallel poll byte in the location specified by result. Bits 0 to 7 of the
parallel poll byte correspond to the dio lines 1 to 8, with a 1 indicating the corresponding dio line is
asserted. The devices on the bus you wish to poll should be configured beforehand with PPollConfig().
The board must be controller-in-charge to perform a parallel poll.

PPollConfig

Name
PPollConfig — configure a device’s parallel poll response

Synopsis

#include <gpib/ib.h>

void PPollConfig(int board_desc, Addr4882_t address, int dio_line, int
line_sense);

61

Linux-GPIB 3.2.11 Documentation

Description

PPollConfig() configures the device specified by address to respond to parallel polls. The dio_line
(valid values are 1 through 8) specifies which dio line the device being configured should use to send
back its parallel poll response. The line_sense argument specifies the polarity of the response. If
line_sense is nonzero, then the specified dio line will be asserted to indicate that the ’individual status
bit’ (or ’ist’) is 1. If sense is zero, then the specified dio line will be asserted when ist is zero.

PPollUnconfig

Name
PPollUnconfig — disable devices’ parallel poll response

Synopsis

#include <gpib/ib.h>

void PPollUnconfig(int board_desc, const Addr4882_t addressList[]);

Description

PPollUnconfig() configures the devices specified by addressList to ignore parallel polls.

RcvRespMsg

Name
RcvRespMsg — read data

Synopsis

#include <gpib/ib.h>

void RcvRespMsg(int board_desc, void *buffer, long count, int termination);

62

Linux-GPIB 3.2.11 Documentation

Description

RcvRespMsg() reads data from the bus. A device must have already been addressed as talker (and the
board as listener) before calling this function. Addressing may be accomplished with the ReceiveSetup()
function.

Up to count bytes are read into the array specified by buffer. The termination argument specifies
the 8-bit end-of-string character (which must be a value from 0 to 255) whose reception will terminate a
read. termination can also be set to the ’STOPend’ constant, in which case no end-of-string character
will be used. Assertion of the EOI line will always end a read.

You may find it simpler to use the slightly higher level function Receive(), since it does not require
addressing and reading of data to be performed separately.

ReadStatusByte

Name
ReadStatusByte — serial poll a device

Synopsis

#include <gpib/ib.h>

void ReadStatusByte(int board_desc, Addr4882_t address, short *result);

Description

ReadStatusByte() causes the board specified by the board descriptor board_desc to serial poll the GPIB
address specified by address. The status byte is stored at the location specified by the result pointer.
If you wish to serial poll multiple devices, it may be slightly more efficient to use AllSPoll(). Serial polls
may also be conducted with the ’traditional API’ function ibrsp().

63

Linux-GPIB 3.2.11 Documentation

Receive

Name
Receive — perform receive addressing and read data

Synopsis

#include <gpib/ib.h>

void Receive(int board_desc, Addr4882_t address, void *buffer, long count,
int termination);

Description

Receive() performs the necessary addressing, then reads data from the device specified by address. It is
equivalent to a ReceiveSetup() call followed by a RcvRespMsg() call.

ReceiveSetup

Name
ReceiveSetup — perform receive addressing

Synopsis

#include <gpib/ib.h>

void ReceiveSetup(int board_desc, Addr4882_t address);

Description

ReceiveSetup() addresses the device specified by address as talker, and addresses the interface board as
listener. A subsequent RcvRespMsg() call will read data from the device.

64

Linux-GPIB 3.2.11 Documentation

You may find it simpler to use the slightly higher level function Receive(), since it does not require
addressing and reading of data to be performed separately.

ResetSys

Name
ResetSys — reset system

Synopsis

#include <gpib/ib.h>

void ResetSys(int board_desc, const Addr4882_t addressList[]);

Description

ResetSys() has the following effects:

• The remote enable bus line is asserted.

• An interface clear is performed (the interface clear bus line is asserted for at least 100 microseconds).

• The device clear command is sent to all the devices on the bus.

• The *RST message is sent to every device specified in the addressList.

Send

Name
Send — perform send addressing and write data

65

Linux-GPIB 3.2.11 Documentation

Synopsis

#include <gpib/ib.h>

void Send(int board_desc, Addr4882_t address, const void *data, long count,
int eot_mode);

Description

Send() addresses the device specified by address as listener, then writes data onto the bus. It is
equivalent to a SendList() except it only uses a single GPIB address to specify the listener instead of
allowing an array of listeners.

SendCmds

Name
SendCmds — write command bytes onto bus

Synopsis

#include <gpib/ib.h>

void SendCmds(int board_desc, const void *cmds, long count);

Description

SendCmds() writes count command byte onto the the GPIB bus from the array cmds.

It is generally not necessary to call SendCmds(). It is provided for advanced users who want direct,
low-level access to the GPIB bus.

66

Linux-GPIB 3.2.11 Documentation

SendDataBytes

Name
SendDataBytes — write data

Synopsis

#include <gpib/ib.h>

void SendDataBytes(int board_desc, const void *data, long count, int
eot_mode);

Description

SendDataBytes() writes data to the bus. One or more devices must have already been addressed as
listener (and the board as talker) before calling this function. Addressing may be accomplished with the
SendSetup() function.

count bytes are written from the array specified by data. The eot_mode argument specifies how the
message should be terminated, and may be any of the following values:

Table 1. eot modes

constant value description
NULLend 0 Do not assert EOI or add a

newline at the end of the write.

DABend 1 Assert EOI with the last byte of
the write.

NLend 2 Append a newline, and assert
EOI with the newline at the end
of the write.

You may find it simpler to use the slightly higher level functions Send() or SendList(), since they does
not require addressing and writing of data to be performed separately.

67

Linux-GPIB 3.2.11 Documentation

SendIFC

Name
SendIFC — perform interface clear

Synopsis

#include <gpib/ib.h>

void SendIFC(int board_desc);

Description

SendIFC() resets the GPIB bus by asserting the ’interface clear’ (IFC) bus line for a duration of at least
100 microseconds. The board specified by board_desc must be the system controller in order to assert
IFC. The interface clear causes all devices to untalk and unlisten, puts them into serial poll disabled state
(don’t worry, you will still be able to conduct serial polls), and the board becomes controller-in-charge.

SendList

Name
SendList — write data to multiple devices

Synopsis

#include <gpib/ib.h>

void SendList(int board_desc, const Addr4882_t addressList[], const void

*data, long count, int eot_mode);

Description

SendList() addresses the devices in addressList as listeners, then writes the contents of the array data

to them. It is equivalent to a SendSetup() call followed by a SendDataBytes() call.

68

Linux-GPIB 3.2.11 Documentation

SendLLO

Name
SendLLO — put devices into local lockout mode

Synopsis

#include <gpib/ib.h>

void SendLLO(int board_desc);

Description

SendLLO() asserts the ’remote enable’ bus line, then sends the LLO command byte. Any devices
currently addressed as listener will be put into RWLS (remote with lockout state), and all other devices
will enter LWLS (local with lockout state). Local lockout means the remote/local mode of devices cannot
be changed though the devices’ front-panel controls. Unasserting the REN line should bring the devices
out of lockout state.

The SetRWLS() performs a similar function, except it lets you specifiy which devices you wish to
address as listener before sending the LLO command.

SendSetup

Name
SendSetup — perform send addressing

Synopsis

#include <gpib/ib.h>

void SendSetup(int board_desc, const Addr4882_t addressList[]);

69

Linux-GPIB 3.2.11 Documentation

Description

SendSetup() addresses the devices in addressList as listeners, and addresses the interface board as
talker. A subsequent SendDataBytes() call will write data to the devices.

You may find it simpler to use the slightly higher level functions Send() or SendList(), since they does
not require addressing and writing of data to be performed separately.

SetRWLS

Name
SetRWLS — put devices into remote with lockout state

Synopsis

#include <gpib/ib.h>

void SetRWLS(int board_desc, const Addr4882_t addressList[]);

Description

SetRWLS() asserts the ’remote enable’ bus line, addresses the devices in the addressList array as
listeners, then sends the LLO command byte. The devices addressed as listener will be put into RWLS
(remote with lockout state), and all other devices will enter LWLS (local with lockout state). Local
lockout means the remote/local mode of devices cannot be changed though the devices’ front-panel
controls. Unasserting the REN line should bring the devices out of the lockout state.

TestSRQ

Name
TestSRQ — query state of SRQ bus line

70

Linux-GPIB 3.2.11 Documentation

Synopsis

#include <gpib/ib.h>

void TestSRQ(int board_desc, short *result);

Description

TestSRQ() checks the state of the SRQ bus line and writes its state to the location specified by result.
A ’1’ indicates the SRQ line is asserted, and a ’0’ indicates the line is not asserted.

Some boards lack the capability to report the status of the SRQ line. In such a case, an ECAP error is
returned in iberr.

TestSys

Name
TestSys — perform self-test queries on devices

Synopsis

#include <gpib/ib.h>

void TestSys(int board_desc, const Addr4882_t addressList[], short
results[]);

Description

TestSys() sends the ’*TST?’ message to all the devices in the addressList array, then reads their
responses into the results array. This will cause devices that conform to the IEEE 488.2 standard to
perform a self-test and respond with a zero on success. A non-zero response indicates an error during the
self-test.

The number of devices which responded with nonzero values from their self-tests is returned in ibcnt and
ibcntl. If a device fails to respond to the *TST? query, an error will be flagged in ibsta (this is different
than NI’s documented behaviour which is broken).

71

Linux-GPIB 3.2.11 Documentation

Trigger

Name
Trigger — trigger a device

Synopsis

#include <gpib/ib.h>

void Trigger(int board_desc, Addr4882_t address);

Description

Trigger() is equivalent to a TriggerList() call with a single address.

TriggerList

Name
Trigger — trigger multiple devices

Synopsis

#include <gpib/ib.h>

void TriggerList(int board_desc, Addr4882_t addressList[]);

Description

TriggerList() sends a GET (group execute trigger) command byte to all the devices specified in the
addressList array. If no addresses are specified in addressList then the GET command byte is sent
without performing any addressing.

72

Linux-GPIB 3.2.11 Documentation

WaitSRQ

Name
WaitSRQ — sleep until the SRQ bus line is asserted

Synopsis

#include <gpib/ib.h>

void WaitSRQ(int board_desc, short *result);

Description

WaitSRQ() sleeps until either the SRQ bus line is asserted, or a timeout (see ibtmo()) occurs. A ’1’ will
be written to the location specified by result if SRQ was asserted, and a ’0’ will be written if the
function timed out.

4.4. Utility Functions

GetPAD

Name
GetPAD — extract primary address from an Addr4882_t value

Synopsis

#include <gpib/ib.h>

static __inline__ unsigned int GetPAD(Addr4882_t address);

73

Linux-GPIB 3.2.11 Documentation

Description

GetPAD() extracts the primary address packed into the Addr4882_t value address.

Return value

The primary GPIB address (from 0 through 30) stored in address.

GetSAD

Name
GetSAD — extract secondary address from an Addr4882_t value

Synopsis

#include <gpib/ib.h>

static __inline__ unsigned int GetSAD(Addr4882_t address);

Description

GetSAD() extracts the secondary address packed into the Addr4882_t value address.

Return value

The secondary GPIB address (from 0x60 through 0x7e, or 0 for none) stored in address.

74

Linux-GPIB 3.2.11 Documentation

MakeAddr

Name
MakeAddr — pack primary and secondary address into an Addr4882_t value

Synopsis

#include <gpib/ib.h>

static __inline__ Addr4882_t MakeAddr(unsigned int pad, unsigned int sad);

Description

MakeAddr() generates an Addr4882_t value that corresponds to the specified primary address pad and
secondary address sad. It does so by putting pad into the least significant byte and left shifting sad up
to the next byte.

Examples
Addr4882_t addressList[5];

addressList[0] = 5 /* primary address 5, no secondary address */
addressList[1] = MakeAddr(3, 0); /* primary address 3, no secondary address */
addressList[2] = MakeAddr(7, 0x70); /* primary address 3, secondary address 16 */
addressList[3] = MakeAddr(20, MSA(9)); /* primary address 20, secondary address 9 */
addressList[4] = NOADDR;

Return value

An Addr4882_t value corresponding to the specified primary and secondary GPIB address.

MLA

Name
MLA — generate ’my listen address’ command byte

75

Linux-GPIB 3.2.11 Documentation

Synopsis

#include <gpib/ib.h>

uint8_t MLA(unsigned int address);

Description

MLA() returns a ’my listen address’ command byte corresponding to the address argument. The
address my be between 0 and 30.

Return value

The appropriate MLA command byte is returned.

MSA

Name
MSA — generate ’my secondary address’ command byte

Synopsis

#include <gpib/ib.h>

uint8_t MSA(unsigned int address);

Description

MSA() returns a ’my secondary address’ command byte corresponding to the address argument. The
address my be between 0 and 30. This macro is also useful for mangling secondary addresses from the
’real’ values between 0 and 30 to the range 0x60 to 0x7e used by most of the library’s functions.

76

Linux-GPIB 3.2.11 Documentation

Return value

The appropriate MSA command byte is returned.

MTA

Name
MTA — generate ’my talk address’ command byte

Synopsis

#include <gpib/ib.h>

uint8_t MTA(unsigned int address);

Description

MTA() returns a ’my talk address’ command byte corresponding to the address argument. The
address my be between 0 and 30.

Return value

The appropriate MTA command byte is returned.

PPE_byte

Name
PPE_byte — generate ’parallel poll enable’ command byte

77

Linux-GPIB 3.2.11 Documentation

Synopsis

#include <gpib/ib.h>

uint8_t PPE_byte(unsigned int dio_line, int sense);

Description

PPE_byte() returns a ’parallel poll enable’ command byte corresponding to the dio_line and sense

arguments. The dio_line (valid values are 1 through 8) specifies which dio line the device being
configured should use to send back its parallel poll response. The sense argument specifies the polarity
of the response. If sense is nonzero, then the specified dio line will be asserted to indicate that the
’individual status bit’ (or ’ist’) is 1. If sense is zero, then the specified dio line will be asserted when ist
is zero.

Return value

The appropriate PPE command byte is returned.

ThreadIbcnt and ThreadIbcntl

Name
ThreadIbcnt and ThreadIbcntl — thread-specific ibcnt and ibcntl values

Synopsis

#include <gpib/ib.h>

int ThreadIbcnt(void);
long ThreadIbcntl(void);

Description

ThreadIbcnt() and ThreadIbcntl() return thread-local versions of the global variables ibcnt and ibcntl.

78

Linux-GPIB 3.2.11 Documentation

Return value

The value of ibcnt or ibcntl corresponding to the last ’traditional’ or ’multidevice’ function called in the
current thread is returned.

ThreadIberr

Name
ThreadIberr — thread-specific iberr value

Synopsis

#include <gpib/ib.h>

int ThreadIberr(void);

Description

ThreadIberr() returns a thread-local version of the global variable iberr.

Return value

The value of iberr corresponding to the last ’traditional’ or ’multidevice’ function called by the current
thread is returned.

ThreadIbsta

Name
ThreadIbsta — thread-specific ibsta value

79

Linux-GPIB 3.2.11 Documentation

Synopsis

#include <gpib/ib.h>

int ThreadIbsta(void);

Description

ThreadIbsta() returns a thread-local version of the global variable ibsta.

Return value

The value of ibsta corresponding to the last ’traditional’ or ’multidevice’ function called by the current
thread is returned.

5. GPIB protocol

5.1. GPIB command bytes

The meaning and values of the possible GPIB command bytes are as follows:

Table 12. GPIB command bytes

byte value (hexadecimal) name description
0x1 GTL Go to local

0x4 SDC Selected device clear

0x5 PPConfig (also ’PPC’ on
non-powerpc architectures)

Parallel poll configure

0x8 GET Group execute trigger

0x9 TCT Take control

0x11 LLO Local lockout

0x14 DCL Device clear

0x15 PPU Parallel poll unconfigure

0x18 SPE Serial poll enable

80

Linux-GPIB 3.2.11 Documentation

byte value (hexadecimal) name description
0x19 SPD Serial poll disable

0x20 to 0x3e MLA0 to MLA30 My (primary) listen address 0 to
30

0x3f UNL Unlisten

0x40 to 0x5e MTA0 to MTA30 My (primary) talk address 0 to
30

0x5f UNT Untalk

0x60 to 0x6f MSA0 to MSA15, also PPE When following a talk or listen
address, this is ’my secondary
address’ 0 to 15. When following
a parallel poll configure, this is
’parallel poll enable’. For parallel
poll enable, the least significant 3
bits of the command byte specify
which DIO line the device should
use to send its parallel poll
response. The fourth least
significant bit (0x8) indicates the
’sense’ or polarity the device
should use when responding.

0x70 to 0x7d MSA16 to MSA29, also PPD When following a talk or listen
address, this is ’my secondary
address’ 16 to 29. When
following a parallel poll
configure, this is ’parallel poll
disable’.

0x7e MSA30 My secondary address 30

5.2. GPIB bus lines

Physically, the GPIB bus consists of 8 data lines, 3 handshaking lines, and 5 control lines (and 8 ground
lines). Brief descriptions of how they are used follow:

Table 13. GPIB bus lines

bus line description pin number

81

Linux-GPIB 3.2.11 Documentation

bus line description pin number
DIO1 through DIO8 Data input/output bits. These 8

lines are used to read and write
the 8 bits of a data or command
byte that is being sent over the
bus.

DIO1 to DIO4 use pins 1 to 4,
DIO5 to DIO8 use pins 13 to 16

EOI End-or-identify. This line is
asserted with the last byte of data
during a write, to indicate the
end of the message. It can also be
asserted along with the ATN line
to conduct a parallel poll.

5

DAV Data valid. This is a handshaking
line, used to signal that the value
being sent with DIO1-DIO8 is
valid. During transfers the
DIO1-DIO8 lines are set, then
the DAV line is asserted after a
delay called the ’T1 delay’. The
T1 delay lets the data lines settle
to stable values before they are
read.

6

NRFD Not ready for data. NRFD is a
handshaking line asserted by
listeners to indicate they are not
ready to receive a new data byte.

7

NDAC Not data accepted. NDAC is a
handshaking line asserted by
listeners to indicate they have not
yet read the byte contained on
the DIO lines.

8

IFC Interface clear. The system
controller can assert this line (it
should be asserted for at least
100 microseconds) to reset the
bus and make itself
controller-in-charge.

9

SRQ Service request. Devices on the
bus can assert this line to request
service from the
controller-in-charge. The
controller can then poll the
devices until it finds the device
requesting service, and perform
whatever action is necessary.

10

82

Linux-GPIB 3.2.11 Documentation

bus line description pin number
ATN Attention. ATN is asserted to

indicate that the DIO lines
contain a command byte (as
opposed to a data byte). Also, it
is asserted with EOI when
conducting parallel polls.

11

REN Remote enable. Asserted by the
system controller, it enables
devices to enter remote mode.
When REN is asserted, a device
will enter remote mode when it is
addressed by the controller.
When REN is false, all devices
will immediately return to local
mode.

17

A. GNU Free Documentation License
Copyright (C) 2000,2001,2002 Free Software Foundation, Inc. 59 Temple Place, Suite 330, Boston, MA
02111-1307 USA Everyone is permitted to copy and distribute verbatim copies of this license document, but
changing it is not allowed.

A.1. PREAMBLE

The purpose of this License is to make a manual, textbook, or other functional and useful document
"free" in the sense of freedom: to assure everyone the effective freedom to copy and redistribute it, with
or without modifying it, either commercially or noncommercially. Secondarily, this License preserves for
the author and publisher a way to get credit for their work, while not being considered responsible for
modifications made by others.

This License is a kind of "copyleft", which means that derivative works of the document must themselves
be free in the same sense. It complements the GNU General Public License, which is a copyleft license
designed for free software.

We have designed this License in order to use it for manuals for free software, because free software
needs free documentation: a free program should come with manuals providing the same freedoms that
the software does. But this License is not limited to software manuals; it can be used for any textual
work, regardless of subject matter or whether it is published as a printed book. We recommend this
License principally for works whose purpose is instruction or reference.

83

Linux-GPIB 3.2.11 Documentation

A.2. APPLICABILITY AND DEFINITIONS

This License applies to any manual or other work, in any medium, that contains a notice placed by the
copyright holder saying it can be distributed under the terms of this License. Such a notice grants a
world-wide, royalty-free license, unlimited in duration, to use that work under the conditions stated
herein. The "Document", below, refers to any such manual or work. Any member of the public is a
licensee, and is addressed as "you". You accept the license if you copy, modify or distribute the work in a
way requiring permission under copyright law.

A "Modified Version" of the Document means any work containing the Document or a portion of it,
either copied verbatim, or with modifications and/or translated into another language.

A "Secondary Section" is a named appendix or a front-matter section of the Document that deals
exclusively with the relationship of the publishers or authors of the Document to the Document’s overall
subject (or to related matters) and contains nothing that could fall directly within that overall subject.
(Thus, if the Document is in part a textbook of mathematics, a Secondary Section may not explain any
mathematics.) The relationship could be a matter of historical connection with the subject or with related
matters, or of legal, commercial, philosophical, ethical or political position regarding them.

The "Invariant Sections" are certain Secondary Sections whose titles are designated, as being those of
Invariant Sections, in the notice that says that the Document is released under this License. If a section
does not fit the above definition of Secondary then it is not allowed to be designated as Invariant. The
Document may contain zero Invariant Sections. If the Document does not identify any Invariant Sections
then there are none.

The "Cover Texts" are certain short passages of text that are listed, as Front-Cover Texts or Back-Cover
Texts, in the notice that says that the Document is released under this License. A Front-Cover Text may
be at most 5 words, and a Back-Cover Text may be at most 25 words.

A "Transparent" copy of the Document means a machine-readable copy, represented in a format whose
specification is available to the general public, that is suitable for revising the document
straightforwardly with generic text editors or (for images composed of pixels) generic paint programs or
(for drawings) some widely available drawing editor, and that is suitable for input to text formatters or
for automatic translation to a variety of formats suitable for input to text formatters. A copy made in an
otherwise Transparent file format whose markup, or absence of markup, has been arranged to thwart or
discourage subsequent modification by readers is not Transparent. An image format is not Transparent if
used for any substantial amount of text. A copy that is not "Transparent" is called "Opaque".

Examples of suitable formats for Transparent copies include plain ASCII without markup, Texinfo input
format, LaTeX input format, SGML or XML using a publicly available DTD, and standard-conforming
simple HTML, PostScript or PDF designed for human modification. Examples of transparent image
formats include PNG, XCF and JPG. Opaque formats include proprietary formats that can be read and
edited only by proprietary word processors, SGML or XML for which the DTD and/or processing tools

84

Linux-GPIB 3.2.11 Documentation

are not generally available, and the machine-generated HTML, PostScript or PDF produced by some
word processors for output purposes only.

The "Title Page" means, for a printed book, the title page itself, plus such following pages as are needed
to hold, legibly, the material this License requires to appear in the title page. For works in formats which
do not have any title page as such, "Title Page" means the text near the most prominent appearance of the
work’s title, preceding the beginning of the body of the text.

A section "Entitled XYZ" means a named subunit of the Document whose title either is precisely XYZ
or contains XYZ in parentheses following text that translates XYZ in another language. (Here XYZ
stands for a specific section name mentioned below, such as "Acknowledgements", "Dedications",
"Endorsements", or "History".) To "Preserve the Title" of such a section when you modify the Document
means that it remains a section "Entitled XYZ" according to this definition.

The Document may include Warranty Disclaimers next to the notice which states that this License
applies to the Document. These Warranty Disclaimers are considered to be included by reference in this
License, but only as regards disclaiming warranties: any other implication that these Warranty
Disclaimers may have is void and has no effect on the meaning of this License.

A.3. VERBATIM COPYING

You may copy and distribute the Document in any medium, either commercially or noncommercially,
provided that this License, the copyright notices, and the license notice saying this License applies to the
Document are reproduced in all copies, and that you add no other conditions whatsoever to those of this
License. You may not use technical measures to obstruct or control the reading or further copying of the
copies you make or distribute. However, you may accept compensation in exchange for copies. If you
distribute a large enough number of copies you must also follow the conditions in section 3.

You may also lend copies, under the same conditions stated above, and you may publicly display copies.

A.4. COPYING IN QUANTITY

If you publish printed copies (or copies in media that commonly have printed covers) of the Document,
numbering more than 100, and the Document’s license notice requires Cover Texts, you must enclose the
copies in covers that carry, clearly and legibly, all these Cover Texts: Front-Cover Texts on the front
cover, and Back-Cover Texts on the back cover. Both covers must also clearly and legibly identify you as
the publisher of these copies. The front cover must present the full title with all words of the title equally
prominent and visible. You may add other material on the covers in addition. Copying with changes
limited to the covers, as long as they preserve the title of the Document and satisfy these conditions, can
be treated as verbatim copying in other respects.

85

Linux-GPIB 3.2.11 Documentation

If the required texts for either cover are too voluminous to fit legibly, you should put the first ones listed
(as many as fit reasonably) on the actual cover, and continue the rest onto adjacent pages.

If you publish or distribute Opaque copies of the Document numbering more than 100, you must either
include a machine-readable Transparent copy along with each Opaque copy, or state in or with each
Opaque copy a computer-network location from which the general network-using public has access to
download using public-standard network protocols a complete Transparent copy of the Document, free
of added material. If you use the latter option, you must take reasonably prudent steps, when you begin
distribution of Opaque copies in quantity, to ensure that this Transparent copy will remain thus accessible
at the stated location until at least one year after the last time you distribute an Opaque copy (directly or
through your agents or retailers) of that edition to the public.

It is requested, but not required, that you contact the authors of the Document well before redistributing
any large number of copies, to give them a chance to provide you with an updated version of the
Document.

A.5. MODIFICATIONS

You may copy and distribute a Modified Version of the Document under the conditions of sections 2 and
3 above, provided that you release the Modified Version under precisely this License, with the Modified
Version filling the role of the Document, thus licensing distribution and modification of the Modified
Version to whoever possesses a copy of it. In addition, you must do these things in the Modified Version:

A. Use in the Title Page (and on the covers, if any) a title distinct from that of the Document, and from
those of previous versions (which should, if there were any, be listed in the History section of the
Document). You may use the same title as a previous version if the original publisher of that version
gives permission.

B. List on the Title Page, as authors, one or more persons or entities responsible for authorship of the
modifications in the Modified Version, together with at least five of the principal authors of the
Document (all of its principal authors, if it has fewer than five), unless they release you from this
requirement.

C. State on the Title page the name of the publisher of the Modified Version, as the publisher.

D. Preserve all the copyright notices of the Document.

E. Add an appropriate copyright notice for your modifications adjacent to the other copyright notices.

F. Include, immediately after the copyright notices, a license notice giving the public permission to use
the Modified Version under the terms of this License, in the form shown in the Addendum below.

G. Preserve in that license notice the full lists of Invariant Sections and required Cover Texts given in
the Document’s license notice.

H. Include an unaltered copy of this License.

I. Preserve the section Entitled "History", Preserve its Title, and add to it an item stating at least the
title, year, new authors, and publisher of the Modified Version as given on the Title Page. If there is
no section Entitled "History" in the Document, create one stating the title, year, authors, and

86

Linux-GPIB 3.2.11 Documentation

publisher of the Document as given on its Title Page, then add an item describing the Modified
Version as stated in the previous sentence.

J. Preserve the network location, if any, given in the Document for public access to a Transparent copy
of the Document, and likewise the network locations given in the Document for previous versions it
was based on. These may be placed in the "History" section. You may omit a network location for a
work that was published at least four years before the Document itself, or if the original publisher of
the version it refers to gives permission.

K. For any section Entitled "Acknowledgements" or "Dedications", Preserve the Title of the section,
and preserve in the section all the substance and tone of each of the contributor acknowledgements
and/or dedications given therein.

L. Preserve all the Invariant Sections of the Document, unaltered in their text and in their titles. Section
numbers or the equivalent are not considered part of the section titles.

M. Delete any section Entitled "Endorsements". Such a section may not be included in the Modified
Version.

N. Do not retitle any existing section to be Entitled "Endorsements" or to conflict in title with any
Invariant Section.

O. Preserve any Warranty Disclaimers.

If the Modified Version includes new front-matter sections or appendices that qualify as Secondary
Sections and contain no material copied from the Document, you may at your option designate some or
all of these sections as invariant. To do this, add their titles to the list of Invariant Sections in the
Modified Version’s license notice. These titles must be distinct from any other section titles.

You may add a section Entitled "Endorsements", provided it contains nothing but endorsements of your
Modified Version by various parties--for example, statements of peer review or that the text has been
approved by an organization as the authoritative definition of a standard.

You may add a passage of up to five words as a Front-Cover Text, and a passage of up to 25 words as a
Back-Cover Text, to the end of the list of Cover Texts in the Modified Version. Only one passage of
Front-Cover Text and one of Back-Cover Text may be added by (or through arrangements made by) any
one entity. If the Document already includes a cover text for the same cover, previously added by you or
by arrangement made by the same entity you are acting on behalf of, you may not add another; but you
may replace the old one, on explicit permission from the previous publisher that added the old one.

The author(s) and publisher(s) of the Document do not by this License give permission to use their
names for publicity for or to assert or imply endorsement of any Modified Version.

A.6. COMBINING DOCUMENTS

You may combine the Document with other documents released under this License, under the terms
defined in section 4 above for modified versions, provided that you include in the combination all of the

87

Linux-GPIB 3.2.11 Documentation

Invariant Sections of all of the original documents, unmodified, and list them all as Invariant Sections of
your combined work in its license notice, and that you preserve all their Warranty Disclaimers.

The combined work need only contain one copy of this License, and multiple identical Invariant Sections
may be replaced with a single copy. If there are multiple Invariant Sections with the same name but
different contents, make the title of each such section unique by adding at the end of it, in parentheses,
the name of the original author or publisher of that section if known, or else a unique number. Make the
same adjustment to the section titles in the list of Invariant Sections in the license notice of the combined
work.

In the combination, you must combine any sections Entitled "History" in the various original documents,
forming one section Entitled "History"; likewise combine any sections Entitled "Acknowledgements",
and any sections Entitled "Dedications". You must delete all sections Entitled "Endorsements".

A.7. COLLECTIONS OF DOCUMENTS

You may make a collection consisting of the Document and other documents released under this License,
and replace the individual copies of this License in the various documents with a single copy that is
included in the collection, provided that you follow the rules of this License for verbatim copying of each
of the documents in all other respects.

You may extract a single document from such a collection, and distribute it individually under this
License, provided you insert a copy of this License into the extracted document, and follow this License
in all other respects regarding verbatim copying of that document.

A.8. AGGREGATION WITH INDEPENDENT WORKS

A compilation of the Document or its derivatives with other separate and independent documents or
works, in or on a volume of a storage or distribution medium, is called an "aggregate" if the copyright
resulting from the compilation is not used to limit the legal rights of the compilation’s users beyond what
the individual works permit. When the Document is included in an aggregate, this License does not apply
to the other works in the aggregate which are not themselves derivative works of the Document.

If the Cover Text requirement of section 3 is applicable to these copies of the Document, then if the
Document is less than one half of the entire aggregate, the Document’s Cover Texts may be placed on
covers that bracket the Document within the aggregate, or the electronic equivalent of covers if the
Document is in electronic form. Otherwise they must appear on printed covers that bracket the whole
aggregate.

88

Linux-GPIB 3.2.11 Documentation

A.9. TRANSLATION

Translation is considered a kind of modification, so you may distribute translations of the Document
under the terms of section 4. Replacing Invariant Sections with translations requires special permission
from their copyright holders, but you may include translations of some or all Invariant Sections in
addition to the original versions of these Invariant Sections. You may include a translation of this
License, and all the license notices in the Document, and any Warranty Disclaimers, provided that you
also include the original English version of this License and the original versions of those notices and
disclaimers. In case of a disagreement between the translation and the original version of this License or
a notice or disclaimer, the original version will prevail.

If a section in the Document is Entitled "Acknowledgements", "Dedications", or "History", the
requirement (section 4) to Preserve its Title (section 1) will typically require changing the actual title.

A.10. TERMINATION

You may not copy, modify, sublicense, or distribute the Document except as expressly provided for under
this License. Any other attempt to copy, modify, sublicense or distribute the Document is void, and will
automatically terminate your rights under this License. However, parties who have received copies, or
rights, from you under this License will not have their licenses terminated so long as such parties remain
in full compliance.

A.11. FUTURE REVISIONS OF THIS LICENSE

The Free Software Foundation may publish new, revised versions of the GNU Free Documentation
License from time to time. Such new versions will be similar in spirit to the present version, but may
differ in detail to address new problems or concerns. See http://www.gnu.org/copyleft/.

Each version of the License is given a distinguishing version number. If the Document specifies that a
particular numbered version of this License "or any later version" applies to it, you have the option of
following the terms and conditions either of that specified version or of any later version that has been
published (not as a draft) by the Free Software Foundation. If the Document does not specify a version
number of this License, you may choose any version ever published (not as a draft) by the Free Software
Foundation.

A.12. ADDENDUM: How to use this License for your
documents

To use this License in a document you have written, include a copy of the License in the document and

89

Linux-GPIB 3.2.11 Documentation

put the following copyright and license notices just after the title page:

Copyright (c) YEAR YOUR NAME. Permission is granted to copy, distribute and/or modify this document
under the terms of the GNU Free Documentation License, Version 1.2 or any later version published by the
Free Software Foundation; with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts. A copy
of the license is included in the section entitled "GNU Free Documentation License".

If you have Invariant Sections, Front-Cover Texts and Back-Cover Texts, replace the "with...Texts." line
with this:

with the Invariant Sections being LIST THEIR TITLES, with the Front-Cover Texts being LIST, and with the
Back-Cover Texts being LIST.

If you have Invariant Sections without Cover Texts, or some other combination of the three, merge those
two alternatives to suit the situation.

If your document contains nontrivial examples of program code, we recommend releasing these
examples in parallel under your choice of free software license, such as the GNU General Public
License, to permit their use in free software.

90

	1. Copying
	2. Configuration
	gpib.conf
	Name
	Description

	gpibconfig
	Name
	Synopsis
	Description
	Options

	3. Supported Hardware
	3.1. Supported Hardware Matrix
	3.2. BoardSpecific Notes
	3.2.1. Agilent (HP) 82341
	3.2.2. Agilent 82350A/B
	3.2.3. Agilent 82357A/B
	3.2.4. National Instruments GPIBUSBB
	3.2.5. National Instruments GPIBUSBHS

	4. LinuxGPIB Reference
	4.1. Global Variables

	ibcnt and ibcntl
	Name
	Synopsis
	Description

	iberr
	Name
	Synopsis
	Description

	ibsta
	Name
	Synopsis
	Description
	4.2. 'Traditional' API Functions

	ibask
	Name
	Synopsis
	Description
	Return value

	ibbna
	Name
	Synopsis
	Description
	Return value

	ibcac
	Name
	Synopsis
	Description
	Return value

	ibclr
	Name
	Synopsis
	Description
	Return value

	ibcmd
	Name
	Synopsis
	Description
	Return value

	ibcmda
	Name
	Synopsis
	Description
	Return value

	ibconfig
	Name
	Synopsis
	Description
	Return value

	ibdev
	Name
	Synopsis
	Description
	Return value

	ibeos
	Name
	Synopsis
	Description
	Return value

	ibeot
	Name
	Synopsis
	Description
	Return value

	ibevent
	Name
	Synopsis
	Description
	Return value

	ibfind
	Name
	Synopsis
	Description
	Return value

	ibgts
	Name
	Synopsis
	Description
	Return value

	ibist
	Name
	Synopsis
	Description
	Return value

	iblines
	Name
	Synopsis
	Description
	Return value

	ibln
	Name
	Synopsis
	Description
	Return value

	ibloc
	Name
	Synopsis
	Description
	Return value

	ibonl
	Name
	Synopsis
	Description
	Return value

	ibpad
	Name
	Synopsis
	Description
	Return value

	ibpct
	Name
	Synopsis
	Description
	Return value

	ibppc
	Name
	Synopsis
	Description
	Return value

	ibrd
	Name
	Synopsis
	Description
	Return value

	ibrda
	Name
	Synopsis
	Description
	Return value

	ibrdf
	Name
	Synopsis
	Description
	Return value

	ibrpp
	Name
	Synopsis
	Description
	Return value

	ibrsc
	Name
	Synopsis
	Description
	Return value

	ibrsp
	Name
	Synopsis
	Description
	Return value

	ibrsv
	Name
	Synopsis
	Description
	Return value

	ibsad
	Name
	Synopsis
	Description
	Return value

	ibsic
	Name
	Synopsis
	Description
	Return value

	ibsre
	Name
	Synopsis
	Description
	Return value

	ibstop
	Name
	Synopsis
	Description
	Return value

	ibtmo
	Name
	Synopsis
	Description
	Return value

	ibtrg
	Name
	Synopsis
	Description
	Return value

	ibwait
	Name
	Synopsis
	Description
	Return value

	ibwrt
	Name
	Synopsis
	Description
	Return value

	ibwrta
	Name
	Synopsis
	Description
	Return value

	ibwrtf
	Name
	Synopsis
	Description
	Return value
	4.3. "Multidevice" API Functions

	AllSPoll
	Name
	Synopsis
	Description

	DevClear
	Name
	Synopsis
	Description

	DevClearList
	Name
	Synopsis
	Description

	EnableLocal
	Name
	Synopsis
	Description

	EnableRemote
	Name
	Synopsis
	Description

	FindLstn
	Name
	Synopsis
	Description

	FindRQS
	Name
	Synopsis
	Description

	PassControl
	Name
	Synopsis
	Description

	PPoll
	Name
	Synopsis
	Description

	PPollConfig
	Name
	Synopsis
	Description

	PPollUnconfig
	Name
	Synopsis
	Description

	RcvRespMsg
	Name
	Synopsis
	Description

	ReadStatusByte
	Name
	Synopsis
	Description

	Receive
	Name
	Synopsis
	Description

	ReceiveSetup
	Name
	Synopsis
	Description

	ResetSys
	Name
	Synopsis
	Description

	Send
	Name
	Synopsis
	Description

	SendCmds
	Name
	Synopsis
	Description

	SendDataBytes
	Name
	Synopsis
	Description

	SendIFC
	Name
	Synopsis
	Description

	SendList
	Name
	Synopsis
	Description

	SendLLO
	Name
	Synopsis
	Description

	SendSetup
	Name
	Synopsis
	Description

	SetRWLS
	Name
	Synopsis
	Description

	TestSRQ
	Name
	Synopsis
	Description

	TestSys
	Name
	Synopsis
	Description

	Trigger
	Name
	Synopsis
	Description

	TriggerList
	Name
	Synopsis
	Description

	WaitSRQ
	Name
	Synopsis
	Description
	4.4. Utility Functions

	GetPAD
	Name
	Synopsis
	Description
	Return value

	GetSAD
	Name
	Synopsis
	Description
	Return value

	MakeAddr
	Name
	Synopsis
	Description
	Examples
	Return value

	MLA
	Name
	Synopsis
	Description
	Return value

	MSA
	Name
	Synopsis
	Description
	Return value

	MTA
	Name
	Synopsis
	Description
	Return value

	PPEbyte
	Name
	Synopsis
	Description
	Return value

	ThreadIbcnt and ThreadIbcntl
	Name
	Synopsis
	Description
	Return value

	ThreadIberr
	Name
	Synopsis
	Description
	Return value

	ThreadIbsta
	Name
	Synopsis
	Description
	Return value

	5. GPIB protocol
	5.1. GPIB command bytes
	5.2. GPIB bus lines

	A. GNU Free Documentation License
	A.1. PREAMBLE
	A.2. APPLICABILITY AND DEFINITIONS
	A.3. VERBATIM COPYING
	A.4. COPYING IN QUANTITY
	A.5. MODIFICATIONS
	A.6. COMBINING DOCUMENTS
	A.7. COLLECTIONS OF DOCUMENTS
	A.8. AGGREGATION WITH INDEPENDENT WORKS
	A.9. TRANSLATION
	A.10. TERMINATION
	A.11. FUTURE REVISIONS OF THIS LICENSE
	A.12. ADDENDUM: How to use this License for your documents

