Coordinate File Format

The GEOTRANS coordinate file format is very simple. A GEOTRANS coordinate file contains a file header that specifies the datum and the coordinate reference frame type of the input coordinates, including any associated parameter values. The header is followed by sets of input coordinate values, one set per line, with the individual values separated by commas followed by at least one space.

Coordinate File Header

Coordinate File Body

Output Files

File Processing Examples

            Coordinate Reference Frames

Geocentric Coordinates

Local Cartesian Coordinates

Geodetic Coordinates

GEOREF Coordinates

Global Area Reference System (GARS) Coordinates

Military Grid Reference System (MGRS) Coordinates

United States National Grid (USNG) Coordinates

Universal Transverse Mercator (UTM) Coordinates

Universal Polar Stereographic (UPS) Coordinates

Albers Equal Area Conic Projection

Azimuthal Equidistant Projection

Bonne Projection

British National Grid Coordinates

Cassini Projection

Cylindrical Equal Area Projection

Eckert IV Projection

Eckert VI Projection

Equidistant Cylindrical Projection

Gnomonic Projection

Lambert Conformal Conic (1 parallel) Projection

Lambert Conformal Conic (2 parallel) Projection

Mercator Projection

Miller Cylindrical Projection

Mollweide Projection

New Zealand Map Grid Projection

Ney's (Modified Lambert Conformal Conic) Projection

Oblique Mercator Projection

Orthographic Projection

Polar Stereographic Projection

Polyconic Projection

Sinusoidal Projection

Stereographic Projection

Transverse Cylindrical Equal Area Projection

Transverse Mercator Projection

Van der Grinten Projection

            Format Options

Coordinate File Header

The header of a GEOTRANS coordinate file consists of two or more lines, each containing a key word or phrase which identifies the purpose of the line, followed by a colon ':', followed by a value. The key words and phrases that can be included in a GEOTRANS coordinate file header are:

  • COORDINATES or PROJECTION – This line identifies the coordinate reference frame type of the coordinates in the file. Therefore, a line with one of these two key words should be included in every GEOTRANS coordinate file header, and should precede any lines which set map projection parameters. The associated value consists of a word or phrase identifying the coordinate system or map projection, as follows:

-        Geodetic

-        GEOREF

-        GARS

-        Geocentric

-        Local Cartesian

-        MGRS

-        USNG

-        UTM

-        UPS

-        Albers Equal Area Conic

-        Azimuthal Equidistant

-        Bonne

-        British National Grid

-        Cassini

-        Cylindrical Equal Area

-        Eckert IV

-        Eckert VI

-        Equidistant Cylindrical

-        Gnomonic

-        Lambert Conformal Conic (1 parallel)

-        Lambert Conformal Conic (2 parallel)

-        Mercator

-        Miller Cylindrical

-        Mollweide

-        New Zealand Map Grid

-        Ney's (Modified Lambert Conformal Conic)

-        Oblique Mercator

-        Orthographic

-        Polar Stereographic

-        Polyconic

-        Sinusoidal

-        Stereographic

-        Transverse Cylindrical Equal Area

-        Transverse Mercator

-        Van der Grinten

  • DATUM – This line identifies the datum for which the coordinates in the file are defined. A line with this key word should be included in every GEOTRANS coordinate file header. The associated value consists of a standard 3-letter or 5-letter datum code, as defined in the datum pull-down lists in the GEOTRANS main and file processing windows (e.g. WGE, EUR-M, EAS, etc.).
  • ELLIPSOID – This line is optional and only used as a comment. It identifies the ellipsoid associated with the current datum. The value consists of a standard 2-letter ellipsoid code (e.g. WE, IN, etc.).
  • ELLIPSOID HEIGHT – This line specifies that any height values in Geodetic input coordinates are measured relative to the selected ellipsoid surface. A line with this key word is optional in a GEOTRANS input file header, and applies only to geodetic input coordinates. If it is not included, all geodetic height values default to ellipsoid heights. The GEOTRANS output file header will contain this line if the Ellipsoid Height type has been specified with Geodetic coordinates.
  • MSL-EGM96-15M-BL HEIGHT – This line specifies that any height values in Geodetic input coordinates are measured relative to the EGM96 geoid model (if the corresponding datum is WGS84) or mean sea level (MSL) surface (otherwise), using a 15-minute grid and bilinear interpolation. This model is recommended for most purposes, as it is the most accurate.  A line with this key word must be included in the GEOTRANS input file header if MSL-EGM96-15M-BL height values are to be input. If it is not included, all geodetic height values default to ellipsoid heights. The GEOTRANS output file header will contain this line if the MSL-EGM96-15M-BL Height type has been specified with Geodetic coordinates.
  • MSL-EGM96-VG-NS HEIGHT – This line specifies that any height values in Geodetic input coordinates are measured relative to the EGM96 geoid model (if the corresponding datum is WGS84) or mean sea level (MSL) surface (otherwise), using a variable resolution grid and natural spline interpolation. This model is included for compatibility with older systems.  A line with this key word must be included in the GEOTRANS input file header if MSL-EGM96-VG-NS height values are to be input. If it is not included, all geodetic height values default to ellipsoid heights. The GEOTRANS output file header will contain this line if the MSL-EGM96-VG-NS Height type has been specified with Geodetic coordinates.
  • MSL-EGM84-10D-BL HEIGHT – This line specifies that any height values in Geodetic input coordinates are measured relative to the EGM84 geoid model (if the corresponding datum is WGS84) or mean sea level (MSL) surface (otherwise), using a 10-degree grid and bilinear interpolation. This model is included for compatibility with older systems.  A line with this key word must be included in the GEOTRANS input file header if MSL-EGM84-10D-BL height values are to be input. If it is not included, all geodetic height values default to ellipsoid heights. The GEOTRANS output file header will contain this line if the MSL-EGM84-10D-BL Height type has been specified with Geodetic coordinates.
  • MSL-EGM84-10D-NS HEIGHT – This line specifies that any height values in Geodetic input coordinates are measured relative to the EGM84 geoid model (if the corresponding datum is WGS84) or mean sea level (MSL) surface (otherwise), using a 10-degree grid and natural spline interpolation. This model is included for compatibility with older systems.  A line with this key word must be included in the GEOTRANS input file header if MSL-EGM84-10D-NS height values are to be input. If it is not included, all geodetic height values default to ellipsoid heights. The GEOTRANS output file header will contain this line if the MSL-EGM84-10D-NS Height type has been specified with Geodetic coordinates.
  • NO HEIGHT – This line specifies that no height values are included with input Geodetic coordinates. A line with this key word must be included in a GEOTRANS input file header if geodetic height values are not to be input. If it is not included, all geodetic height values default to ellipsoid heights. The GEOTRANS output file header will contain this line if the No Height type has been specified with Geodetic coordinates.
  • CENTRAL MERIDIAN – This line specifies the value of a Central Meridian parameter, which defines the horizontal center of a map projection. It is used by all of the map projections (Albers Equal Area Conic, Azimuthal Equidistant, Bonne, Cassini, Cylindrical Equal Area, Eckert IV, Eckert VI, Equidistant Cylindrical, Gnomonic, Lambert Conformal Conic (1 parallel), Lambert Conformal Conic (2 parallel), Mercator, Miller Cylindrical, Mollweide, Ney's (Modified Lambert Conformal Conic), Orthographic, Polyconic, Sinusoidal, Stereographic, Transverse Cylindrical Equal Area, Transverse Mercator, and Van der Grinten) except British National Grid, New Zealand Map Grid, Polar Stereographic and Oblique Mercator. The associated value is a longitude value in degrees, degrees/minutes, or degrees/minutes/seconds, and defaults to 0°E.
  • ORIGIN LATITUDE – This line specifies the value of an Origin Latitude parameter, which defines the vertical center of a map projection. It is used by most of the map projections (Albers Equal Area Conic, Azimuthal Equidistant, Bonne, Cassini, Cylindrical Equal Area, Gnomonic, Lambert Conformal Conic (1 parallel), Lambert Conformal Conic (2 parallel), Ney's (Modified Lambert Conformal Conic), Oblique Mercator, Orthographic, Polyconic, Stereographic, Transverse Cylindrical Equal Area, and Transverse Mercator). It is also used, along with the Origin Longitude, and Origin Height parameters, to specify the location of the origin of a Local Cartesian coordinate system. The associated value is a latitude value in degrees, degrees/minutes, or degrees/minutes/seconds, and defaults to 0°N.
  • STANDARD PARALLEL- This line specifies the value of a Standard Parallel parameter, which defines a parallel along which the point scale factor of the projection is 1.0. It is used by the Equidistant Cylindrical projection. The associated value is a latitude value in degrees, degrees/minutes, or degrees/minutes/seconds, and defaults to 0°N.
  • STANDARD PARALLEL ONE – This line specifies the value of a Standard Parallel parameter, which defines a parallel along which the point scale factor of the projection is 1.0. It is used by the Albers Equal Area Conic, Lambert Conformal Conic (2 parallel) and Ney's (Modified Lambert Conformal Conic) projections. The associated value is a latitude value in degrees, degrees/minutes, or degrees/minutes/seconds, and defaults to 45°N for Albers and Lambert and 71°N for Ney's.
  • STANDARD PARALLEL TWO – This line also specifies the value of a Standard Parallel parameter. It is used by the Albers Equal Area Conic and Lambert Conformal Conic (2 parallel) projections. It may be used by the Ney's (Modified Lambert Conformal Conic) projection, but only as a comment. The associated value is a latitude value in degrees, degrees/minutes, or degrees/minutes/seconds, and defaults to 50°N for Albers and Lambert and 89 59 59.0°N for Ney's.
  • LATITUDE ONE – This line specifies the value of a first latitude parameter, which defines the latitude of the first point lying on the central line. It is used by the Oblique Mercator projection. The associated value is a latitude value in degrees, degrees/minutes, or degrees/minutes/seconds, and defaults to 40°N.
  • LONGITUDE ONE – This line specifies the value of a first longitude parameter, which defines the longitude of the first point lying on the central line. It is used by the Oblique Mercator projection. The associated value is a longitude value in degrees, degrees/minutes, or degrees/minutes/seconds, and defaults to 5°W.
  • LATITUDE TWO – This line specifies the value of a second latitude parameter, which defines the latitude of the second point lying on the central line. It is used by the Oblique Mercator projection. The associated value is a latitude value in degrees, degrees/minutes, or degrees/minutes/seconds, and defaults to 50°N.
  • LONGITUDE TWO – This line specifies the value of a second longitude parameter, which defines the longitude of the second point lying on the central line. It is used by the Oblique Mercator projection. The associated value is a longitude value in degrees, degrees/minutes, or degrees/minutes/seconds, and defaults to 5°E.
  • SCALE FACTOR – This line specifies the projection Scale Factor parameter, which defines the ratio between distances measured in the projection coordinate space, and the corresponding distances on the surface of the reference ellipsoid. It is used by the Lambert Conformal Conic (1 parallel), Mercator, Oblique Mercator, Transverse Cylindrical Equal Area and Transverse Mercator projections. The associated value consists of a real number between 0.3 and 3.0. The default value is 1.0.
  • FALSE EASTING – This line specifies the Easting, or X, coordinate at the origin of the projection. It offsets the projection coordinates, and is commonly used to avoid the need for negative coordinates by setting the coordinate at the origin to a relatively high value. It is used by all of the map projections. The associated value is an optionally signed integer in meters , and defaults to zero.
  • FALSE NORTHING – This line specifies the Northing, or Y, coordinate at the origin of the projection. It offsets the projection coordinates, and is commonly used to avoid the need for negative coordinates by setting the coordinate at the origin to a relatively high value. It is used by all of the map projections. The associated value is an optionally signed integer in meters, and defaults to zero.
  • ORIGIN LONGITUDE – This line specifies the value of an Origin Longitude parameter, which, with the Origin Latitude and Origin Height parameters, specifies the location of the origin of a Local Cartesian coordinate system. The associated value is a longitude value in degrees, degrees/minutes, or degrees/minutes/seconds, and defaults to 0°N.
  • ORIGIN HEIGHT – This line specifies the value of an Origin Height parameter, which, with the Origin Latitude and Origin Longitude parameters, specifies the location of the origin of a Local Cartesian coordinate system. The associated value is a height value in meters relative to the ellipsoid surface, and defaults to zero.
  • ORIENTATION – This line specifies the value of an Orientation parameter, which specifies the angle from north to the positive Y axis of a Local Cartesian coordinate system. The associated value is a longitude value in degrees, degrees/minutes, or degrees/minutes/seconds, and defaults to 0°.
  • LONGITUDE DOWN FROM POLE – This line specifies the orientation of a Polar Stereographic projection. The specified longitude defines the direction of the negative Y axis of the resulting projection. The associated value is a longitude value in degrees, degrees/minutes, or degrees/minutes/seconds, and defaults to 0°.
  • LATITUDE OF TRUE SCALE – This line specifies the scale of a Mercator or Polar Stereographic projection, in terms of the latitude at which the scale factor has a value of 1.0. The associated value is a latitude value in degrees, degrees/minutes, or degrees/minutes/seconds, and defaults to 90°N.

The order of the lines in the header is arbitrary, except that either the "COORDINATES" or "PROJECTION" line, which defines the coordinate reference frame type, must come before any lines specifying parameters. If the same key word or phrase appears more than once, the value associated with the last appearance will be the value used. The header is terminated by a line containing the phrase 'END OF HEADER'.

If any characteristic or required parameter is not specified in the input coordinate file header, a default value is assigned. The default coordinate reference frame type is Geodetic, and the default datum is WGE (WGS 84). For each coordinate reference frame type, the default parameter values used are the same default values that are displayed in the parameter fields in the GEOTRANS main window when that coordinate reference frame type is selected.

Coordinate File Body

Following the header, the body of a GEOTRANS coordinate file consists of individual lines, with each line containing a single set of coordinates. Coordinate lines consist of individual coordinate values separated by commas followed by at least one space. Coordinates can take on several different forms, depending on the nature of the coordinate system or map projection being used:

  • Geodetic Coordinates (Latitude, Longitude, Height) – Geodetic coordinates consist of a latitude value in either degrees, degrees/minutes, or degrees/minutes/seconds, a longitude value in either degrees, degrees/minutes, or degrees/minutes/seconds, and an optional height value in meters. The height may represent either a height relative to the specified ellipsoid surface, a height relative to the EGM96 or EGM84 geoid (with WGS 84), or a mean sea level (MSL) surface (with local datums), depending on whether ELLIPSOID HEIGHT, MSL-EGM96-15M-BL HEIGHT, MSL-EGM96-VG-NS HEIGHT, MSL-EGM84-10D-BL HEIGHT or MSL-EGM84-10D-NS HEIGHT was specified in the file header. If NO HEIGHT was specified in the file header, no height values should be included in the body of the input file.
  • British National Grid Coordinate Strings – British National Grid coordinates consist of an alphanumeric string made up of two letters followed by up to ten digits.
  • GEOREF Coordinate Strings – GEOREF coordinates consist of an alphanumeric string made up of four letters followed by up to ten digits.
  • GARS Coordinate Strings – GARS coordinates consist of an alphanumeric string made up of three digits followed by two letters and two digits.
  • Geocentric and Local Cartesian coordinates (X, Y, Z) – Geocentric and Local Cartesian coordinate triples consist of three optionally signed integer X, Y, and Z coordinate values, in meters.
  • MGRS Coordinate Strings – MGRS coordinates consist of an alphanumeric string made up of from zero to two digits, followed by three letters, followed by up to ten digits.
  • USNG Coordinate Strings – USNG coordinates consist of an alphanumeric string made up of from zero to two digits, followed by three letters, followed by up to ten digits.
  • UTM Projection Coordinates (Zone, Hemisphere, Easting, Northing) – UTM projection coordinates consist of an integer UTM zone number in the range 1 to 60, and a hemisphere letter ('N' or 'S'), followed by an optionally signed integer Easting, or X, value, in meters, and an optionally signed integer Northing, or Y, value in meters.
  • UPS Projection Coordinates (Hemisphere, X, Y) – Polar projection coordinates consist of a hemisphere letter ('N' or 'S'), followed by an optionally signed integer Easting, or X, value, in meters, and an optionally signed integer Northing, or Y, value in meters.
  • Projection coordinates (Easting, Northing) – Projection coordinates, used with all map projections (Albers Equal Area Conic, Azimuthal Equidistant, Bonne, Cassini, Cylindrical Equal Area, Eckert IV, Eckert VI, Equidistant Cylindrical, Gnomonic, Lambert Conformal Conic (1 parallel), Lambert Conformal Conic (2 parallel), Mercator, Miller Cylindrical, Mollweide, New Zealand Map Grid, Ney's (Modified Lambert Conformal Conic), Oblique Mercator, Orthographic, Polar Stereographic, Polyconic, Sinusoidal, Stereographic, Transverse Cylindrical Equal Area, Transverse Mercator, and Van der Grinten) consist of an optionally signed integer Easting, or X, value, in meters, followed by an optionally signed integer Northing, or Y, value in meters.

In all cases, the coordinate value formats that may be used in a GEOTRANS coordinate file are exactly the same as the format that may be used when entering coordinates into GEOTRANS interactively.

Additional "headers" can be included in the body of a GEOTRANS coordinate file to change the datum, coordinate system or projection, and/or parameters. The start of each additional header is indicated by the keyword "HEADER" at the start of a line. This is followed by a sequence of lines terminated by a line containing the phrase 'END OF HEADER', exactly as described in the previous section.

Comments can also be included anywhere in a GEOTRANS coordinate file. A comment line is indicated by a '#' as the first character. Blank lines can also be included.

Output Files

The coordinate files created by GEOTRANS are identical in format to the coordinate files that it reads. Thus, any coordinate file created by GEOTRANS may be subsequently used as an input coordinate file. The header of the output file is generated based on the output datum and coordinate reference frame type selections made in the GEOTRANS File Processing window. The number of lines in the output file header may not be identical to the number of lines in the input file header, especially if the number of parameters is different. Any comment lines in the input file header are not copied to the output file header.

Following the file header, one line in the output file is generated for each line in the input file. For each line in the input file containing coordinates, a line is written to the output file containing the corresponding converted coordinates. Conversion accuracy information, in the form of 90% circular error (CE), linear error (LE), and spherical error (SE) values, in meters, are appended to each output line in the form of a comment. If an error is encountered in converting the coordinates on a particular line, a comment line is written to the output file containing the appropriate error message. If a warning is encountered in converting the coordinates on a particular line, a comment line is written to the output file containing the appropriate warning message. The converted coordinates are then written on the next line. Any comment lines in the body of the input file are copied unchanged to the output file. Any blank lines in the body of the input file are also copied to the output file.

There is no standard naming convention for GEOTRANS coordinate files. Typically, file extensions such as '.TXT', or '.DAT' are used, but this is entirely up to you.

File Processing Examples

Note: The coordinates in the file processing examples, unless otherwise noted, represent the border of Mauritius, a small country to the east of Madagascar.  Unless otherwise noted, the file processing examples all use the following options: Geodetic Units – Degrees, Geodetic Separator – DD MM SS, Sign / Hemisphere - +/-, Longitude Range {-180, 180}, and Precision – 1m 0.1 Second.

Coordinate Reference Frames

Geodetic

Input File:

COORDINATES: Geodetic

DATUM: WGE

# ELLIPSOID: WE

ELLIPSOID HEIGHT

END OF HEADER

 

# Mauritius

-20.000000, 57.542221, 0

-20.000000, 57.548054, 0

-20.000000, 57.569443, 0

-20.000000, 57.653057, 0

-20.293333, 57.781387, 0

-20.528610, 57.515835, 0

-20.466667, 57.295555, 0

-20.000000, 57.542221, 0

Output File:

COORDINATES: Geodetic

DATUM: WGE

# ELLIPSOID: WE

NO HEIGHT

END OF HEADER

 

# Mauritius

-20.00000, 57.54222

-20.00000, 57.54805

-20.00000, 57.56944

-20.00000, 57.65306

-20.29333, 57.78139

-20.52861, 57.51584

-20.46667, 57.29556

-20.00000, 57.54222

 

The example above shows a GEOTRANS coordinate input file containing Geodetic coordinates and its resulting output file containing Geodetic coordinates. The input file header defines the coordinate type, datum and height type, which may be NO HEIGHT, ELLIPSOID HEIGHT, MSL-EGM96-15M-BL HEIGHT, MSL-EGM96-VG-NS HEIGHT, MSL-EGM84-10D-BL HEIGHT or MSL-EGM84-10D-NS HEIGHT. The input file lists the height type as ELLIPSOID HEIGHT and displays height values while the output file uses NO HEIGHT and does not display height values.

GEOREF

Input File:

COORDINATES: GEOREF

DATUM: WGE

# ELLIPSOID: WE

END OF HEADER

 

# Mauritius

RENL3253300000

RENL3288300000

RENL3416700000

RENL3918300000

RENK4688342400

RENK3095028283

RENK1773332000

RENL3253300000

 

Output File:

COORDINATES: Geodetic

DATUM: WGE

# ELLIPSOID: WE

NO HEIGHT

END OF HEADER

 

# Mauritius

-20.00000, 57.54222

-20.00000, 57.54805

-20.00000, 57.56945

-20.00000, 57.65305

-20.29333, 57.78138

-20.52862, 57.51583

-20.46667, 57.29555

-20.00000, 57.54222

 

The example above shows a GEOTRANS coordinate input file containing GEOREF coordinates and its resulting output file containing Geodetic coordinates. The input file header defines the coordinate type and datum.

GARS

Input File:

COORDINATES: Global Area Reference System (GARS)

DATUM: WGE

# ELLIPSOID: WE

END OF HEADER

 

# Mauritius

476FW37

476FW38

476FV41

476FU11

475FV47

476FW37

Output File:

COORDINATES: Geodetic

DATUM: WGE

# ELLIPSOID: WE

NO HEIGHT

END OF HEADER

 

# Mauritius

-19.95833, 57.54167

-19.95833, 57.62500

-20.29167, 57.79167

-20.54167, 57.54167

-20.45833, 57.29167

-19.95833, 57.54167

 

The example above shows a GEOTRANS coordinate input file containing GARS coordinates and its resulting output file containing Geodetic coordinates. The input file header defines the coordinate type and datum.

Geocentric

Input File:

COORDINATES: Geocentric

DATUM: WGE

# ELLIPSOID: WE

END OF HEADER

 

# Mauritius

3217833, 5059210, -2167697 # CE90: 50, LE90: 20, SE90: 50

3217318, 5059537, -2167697 # CE90: 50, LE90: 20, SE90: 50

3215429, 5060738, -2167697 # CE90: 50, LE90: 20, SE90: 50

3208040, 5065425, -2167697 # CE90: 50, LE90: 20, SE90: 50

3190724, 5063135, -2198184 # CE90: 50, LE90: 20, SE90: 50

3209277, 5040630, -2222596 # CE90: 50, LE90: 20, SE90: 50

3229930, 5030275, -2216172 # CE90: 50, LE90: 20, SE90: 50

3217833, 5059210, -2167697 # CE90: 50, LE90: 20, SE90: 50

Output File:

COORDINATES: Geodetic

DATUM: REU

# ELLIPSOID: IN

ELLIPSOID HEIGHT

END OF HEADER

 

# Mauritius

-19.98750, 57.54784, 32 # CE90: 73, LE90: 46, SE90: 80

-19.98750, 57.55367, 32 # CE90: 73, LE90: 46, SE90: 80

-19.98750, 57.57506, 33 # CE90: 73, LE90: 46, SE90: 80

-19.98750, 57.65867, 33 # CE90: 73, LE90: 46, SE90: 80

-20.28082, 57.78699, 28 # CE90: 73, LE90: 46, SE90: 80

-20.51611, 57.52148, 20 # CE90: 73, LE90: 46, SE90: 80

-20.45417, 57.30122, 19 # CE90: 73, LE90: 46, SE90: 80

-19.98750, 57.54784, 32 # CE90: 73, LE90: 46, SE90: 80

The example above shows a GEOTRANS coordinate input file containing Geocentric coordinates and its resulting output file containing Geodetic coordinates. The input file header defines the coordinate type and datum. The above example also illustrates the use of circular, linear and spherical errors. The values in the input file indicate the accuracy of the input coordinates. The values in the output file indicate the accuracy of the output coordinates.

Local Cartesian

Input File:

COORDINATES: Local Cartesian

DATUM: WGE

# ELLIPSOID: WE

ORIGIN LATITUDE: -20.26430

ORIGIN LONGITUDE: 57.53847

ORIGIN HEIGHT: 0

ORIENTATION: 0.00000

END OF HEADER

 

# Mauritius

392, 29260, -67

1003, 29260, -68

3241, 29260, -68

11991, 29256, -79

25373, -3232, -51

-2361, -29261, -68

-25345, -22422, -90

392, 29260, -67

 

Output File:

COORDINATES: Geodetic

DATUM: WGE

# ELLIPSOID: WE

ELLIPSOID HEIGHT

END OF HEADER

 

# Mauritius

-20.00000, 57.54222, 1

-20.00000, 57.54805, 0

-19.99999, 57.56944, 0

-19.99999, 57.65306, 0

-20.29333, 57.78139, 0

-20.52860, 57.51583, 0

-20.46666, 57.29555, 0

-20.00000, 57.54222, 1

The example above shows a GEOTRANS coordinate input file containing Local Cartesian coordinates and its resulting output file containing Geodetic coordinates. The input file header defines the coordinate type, datum and parameters, which for Local Cartesian include the Origin Latitude, Origin Longitude, Origin Height, and Orientation.

Military Grid Reference System (MGRS)

Input File:

COORDINATES: Military Grid Reference System (MGRS)

DATUM: WGE

# ELLIPSOID: WE

END OF HEADER

 

# Mauritius

40KEC5672088427

40KEC5733088425

40KEC5956788417

40KEC6831488386

40KEC8158755865

40KEC5377729936

40KEC3082536848

40KEC5672088427

Output File:

COORDINATES: Geodetic

DATUM: WGE

# ELLIPSOID: WE

NO HEIGHT

END OF HEADER

 

# Mauritius

-20.00000, 57.54222

-20.00000, 57.54805

-20.00000, 57.56944

-20.00000, 57.65305

-20.29333, 57.78139

-20.52861, 57.51583

-20.46667, 57.29556

-20.00000, 57.54222

The example above shows a GEOTRANS coordinate input file containing MGRS coordinates and its resulting output file containing Geodetic coordinates. The input file header defines the coordinate type and datum.

United States National Grid (USNG)

Input File:

COORDINATES: United States National Grid (USNG)

DATUM: NAS-C

# ELLIPSOID: CC

END OF HEADER

 

# Massachusetts

19TDG2036420770

19TDG2145712247

19TDG2156313480

19TDG2156015331

19TDG2168516131

19TDG2036420770

Output File:

COORDINATES: Geodetic

DATUM: NAS-C

# ELLIPSOID: CC

NO HEIGHT

END OF HEADER

 

# Massachusetts

41.73667, -69.95761

41.66002, -69.94335

41.67114, -69.94224

41.68781, -69.94252

41.69503, -69.94112

41.73667, -69.95761

The example above shows a GEOTRANS coordinate input file containing USNG coordinates and its resulting output file containing Geodetic coordinates. The input file header defines the coordinate type and datum.

Universal Transverse Mercator (UTM)

Input File:

COORDINATES: Universal Transverse Mercator (UTM)

DATUM: WGE

# ELLIPSOID: WE

END OF HEADER

 

# Mauritius

40, S, 556720, 7788427

40, S, 557330, 7788425

40, S, 559567, 7788417

40, S, 568314, 7788386

40, S, 581587, 7755865

40, S, 553777, 7729936

40, S, 530825, 7736848

40, S, 556720, 7788427

Output File:

COORDINATES: Geodetic

DATUM: WGE

# ELLIPSOID: WE

NO HEIGHT

END OF HEADER

 

# Mauritius

-20.00000, 57.54222

-20.00000, 57.54805

-20.00000, 57.56944

-20.00000, 57.65305

-20.29333, 57.78139

-20.52861, 57.51583

-20.46667, 57.29556

-20.00000, 57.54222

The example above shows a GEOTRANS coordinate input file containing Universal Transverse Mercator coordinates and its resulting output file containing Geodetic coordinates. The input file header defines the coordinate type and datum.

Universal Polar Stereographic (UPS)

Note: The coordinates in this file processing example are located on the border of Greenland.

Input File:

COORDINATES: Universal Polar Stereographic (UPS)

DATUM: WGE

# ELLIPSOID: WE

END OF HEADER

 

# Greenland

N, 1557951, 1434204

N, 1573955, 1423287

N, 1581925, 1418551

N, 1586134, 1422078

N, 1586986, 1418015

N, 1604291, 1413337

N, 1606312, 1408223

N, 1612973, 1404030

N, 1623433, 1397366

Output File:

COORDINATES: Geodetic

DATUM: WGE

# ELLIPSOID: WE

NO HEIGHT

END OF HEADER

 

# Greenland

83.53944, -38.00005

83.54833, -36.45502

83.55612, -35.71699

83.60388, -35.60750

83.57862, -35.36196

83.63250, -33.99999

83.60444, -33.63440

83.60584, -32.99997

83.60583, -31.99996

The example above shows a GEOTRANS coordinate input file containing Universal Polar Stereographic coordinates and its resulting output file containing Geodetic coordinates. The input file header defines the coordinate type and datum.

Albers Equal Area Conic

Example 1:

Input File:

COORDINATES: Geodetic

DATUM: TOY-B1

# ELLIPSOID: WE

ELLIPSOID HEIGHT

END OF HEADER

 

# Mauritius

-20.000000, 57.542221, 0 # CE90: 50, LE90: 20, SE90: 50

-20.000000, 57.548054, 0 # CE90: 50, LE90: 20, SE90: 50

-20.000000, 57.569443, 0 # CE90: 50, LE90: 20, SE90: 50

-20.000000, 57.653057, 0 # CE90: 50, LE90: 20, SE90: 50

-20.293333, 57.781387, 0 # CE90: 50, LE90: 20, SE90: 50

-20.528610, 57.515835, 0 # CE90: 50, LE90: 20, SE90: 50

-20.466667, 57.295555, 0 # CE90: 50, LE90: 20, SE90: 50

-20.000000, 57.542221, 0 # CE90: 50, LE90: 20, SE90: 50

 

Output File:

PROJECTION: Albers Equal Area Conic

DATUM: WGE

# ELLIPSOID: WE

CENTRAL MERIDIAN: 57.53847

ORIGIN LATITUDE: -20.26430

STANDARD PARALLEL ONE: -20.52861

STANDARD PARALLEL TWO: -20.00000

FALSE EASTING: 0

FALSE NORTHING: 0

END OF HEADER

 

# Mauritius

# Warning: Input Geodetic Coordinates:  Location is not within valid domain for current datum

788, 29982 # CE90: Unk, LE90: Unk, SE90: Unk

# Warning: Input Geodetic Coordinates:  Location is not within valid domain for current datum

1398, 29982 # CE90: Unk, LE90: Unk, SE90: Unk

# Warning: Input Geodetic Coordinates:  Location is not within valid domain for current datum

3637, 29982 # CE90: Unk, LE90: Unk, SE90: Unk

# Warning: Input Geodetic Coordinates:  Location is not within valid domain for current datum

12387, 29978 # CE90: Unk, LE90: Unk, SE90: Unk

# Warning: Input Geodetic Coordinates:  Location is not within valid domain for current datum

25768, -2510 # CE90: Unk, LE90: Unk, SE90: Unk

# Warning: Input Geodetic Coordinates:  Location is not within valid domain for current datum

-1965, -28539 # CE90: Unk, LE90: Unk, SE90: Unk

# Warning: Input Geodetic Coordinates:  Location is not within valid domain for current datum

-24948, -21700 # CE90: Unk, LE90: Unk, SE90: Unk

# Warning: Input Geodetic Coordinates:  Location is not within valid domain for current datum

788, 29982 # CE90: Unk, LE90: Unk, SE90: Unk

The example above shows a GEOTRANS coordinate input file containing Geodetic coordinates defined relative to the TOY-B1 (TOKYO, South Korea) local datum and its resulting output file containing Albers Equal Area Conic coordinates defined relative to WGS 84. The input file header defines the coordinate type and datum. Warnings encountered when converting coordinates are listed in the output file as comments in the line above the converted coordinate.

Example 2:

Input File:

PROJECTION: Albers Equal Area Conic

DATUM: WGE

# ELLIPSOID: WE

CENTRAL MERIDIAN: 57.53847

ORIGIN LATITUDE: -20.26430

STANDARD PARALLEL ONE: -20.52861

STANDARD PARALLEL TWO: -20.00000

FALSE EASTING: 0

FALSE NORTHING: 0

END OF HEADER

 

# Mauritius

# Warning: Input Geodetic Coordinates:  Location is not within valid domain for current datum

788, 29982 # CE90: Unk, LE90: Unk, SE90: Unk

# Warning: Input Geodetic Coordinates:  Location is not within valid domain for current datum

1398, 29982 # CE90: Unk, LE90: Unk, SE90: Unk

# Warning: Input Geodetic Coordinates:  Location is not within valid domain for current datum

3637, 29982 # CE90: Unk, LE90: Unk, SE90: Unk

# Warning: Input Geodetic Coordinates:  Location is not within valid domain for current datum

12387, 29978 # CE90: Unk, LE90: Unk, SE90: Unk

# Warning: Input Geodetic Coordinates:  Location is not within valid domain for current datum

25768, -2510 # CE90: Unk, LE90: Unk, SE90: Unk

# Warning: Input Geodetic Coordinates:  Location is not within valid domain for current datum

-1965, -28539 # CE90: Unk, LE90: Unk, SE90: Unk

# Warning: Input Geodetic Coordinates:  Location is not within valid domain for current datum

-24948, -21700 # CE90: Unk, LE90: Unk, SE90: Unk

# Warning: Input Geodetic Coordinates:  Location is not within valid domain for current datum

788, 29982 # CE90: Unk, LE90: Unk, SE90: Unk

Output File:

COORDINATES: Geodetic

DATUM: TOY-B1

# ELLIPSOID: BR

NO HEIGHT

END OF HEADER

 

# Mauritius

# Warning: Input Geodetic Coordinates:  Location is not within valid domain for current datum

# Warning: Output Geodetic Coordinates:  Location is not within valid domain for current datum

-20.00000, 57.54222 # CE90: Unk, LE90: Unk, SE90: Unk

# Warning: Input Geodetic Coordinates:  Location is not within valid domain for current datum

# Warning: Output Geodetic Coordinates:  Location is not within valid domain for current datum

-20.00000, 57.54805 # CE90: Unk, LE90: Unk, SE90: Unk

# Warning: Input Geodetic Coordinates:  Location is not within valid domain for current datum

# Warning: Output Geodetic Coordinates:  Location is not within valid domain for current datum

-20.00000, 57.56945 # CE90: Unk, LE90: Unk, SE90: Unk

# Warning: Input Geodetic Coordinates:  Location is not within valid domain for current datum

# Warning: Output Geodetic Coordinates:  Location is not within valid domain for current datum

-20.00000, 57.65306 # CE90: Unk, LE90: Unk, SE90: Unk

# Warning: Input Geodetic Coordinates:  Location is not within valid domain for current datum

# Warning: Output Geodetic Coordinates:  Location is not within valid domain for current datum

-20.29332, 57.78139 # CE90: Unk, LE90: Unk, SE90: Unk

# Warning: Input Geodetic Coordinates:  Location is not within valid domain for current datum

# Warning: Output Geodetic Coordinates:  Location is not within valid domain for current datum

-20.52860, 57.51584 # CE90: Unk, LE90: Unk, SE90: Unk

# Warning: Input Geodetic Coordinates:  Location is not within valid domain for current datum

# Warning: Output Geodetic Coordinates:  Location is not within valid domain for current datum

-20.46666, 57.29556 # CE90: Unk, LE90: Unk, SE90: Unk

# Warning: Input Geodetic Coordinates:  Location is not within valid domain for current datum

# Warning: Output Geodetic Coordinates:  Location is not within valid domain for current datum

-20.00000, 57.54222 # CE90: Unk, LE90: Unk, SE90: Unk

The example above shows the GEOTRANS coordinate file output in the previous example being used as an input file, converting Albers Equal Area Conic coordinates defined relative to WGS 84 being converted back to Geodetic coordinates defined relative to the TOY-B1 (TOKYO, South Korea) local datum. The input file header defines the projection type, datum and projection parameters, which for Albers Equal Area Conic include the Central Meridian, Origin Latitude, Standard Parallel One, Standard Parallel Two, False Easting, and False Northing. Warnings encountered when converting coordinates are listed in the output file as comments in the line above the converted coordinate. Comments in the input file body, including the warning messages from the previous example, are copied to the output file.

Azimuthal Equidistant

Input File:

PROJECTION: Azimuthal Equidistant

DATUM: WGE

# ELLIPSOID: WE

CENTRAL MERIDIAN: 57.53847

ORIGIN LATITUDE: -20.26430

FALSE EASTING: 0

FALSE NORTHING: 0

END OF HEADER

 

# Mauritius

392, 29389

1001, 29389

3236, 29389

11973, 29385

25334, -3246

-2357, -29390

-25306, -22520

392, 29389

Output File:

COORDINATES: Geodetic

DATUM: WGE

# ELLIPSOID: WE

NO HEIGHT

END OF HEADER

 

# Mauritius

-20.00000, 57.54222

-20.00000, 57.54805

-20.00000, 57.56944

-20.00000, 57.65306

-20.29332, 57.78138

-20.52861, 57.51584

-20.46666, 57.29555

-20.00000, 57.54222

The example above shows a GEOTRANS coordinate input file containing Azimuthal Equidistant coordinates and its resulting output file containing Geodetic coordinates. The input file header defines the projection type, datum and projection parameters, which for Azimuthal Equidistant include the Central Meridian, Origin Latitude, False Easting, and False Northing.

Bonne

Input File:

PROJECTION: Bonne

DATUM: WGE

# ELLIPSOID: WE

CENTRAL MERIDIAN: 57.53847

ORIGIN LATITUDE: -20.26430

FALSE EASTING: 0

FALSE NORTHING: 0

END OF HEADER

 

# Mauritius

392, 29260

1003, 29260

3241, 29260

11991, 29256

25373, -3232

-2361, -29261

-25345, -22422

392, 29260

Output File:

COORDINATES: Geodetic

DATUM: WGE

# ELLIPSOID: WE

NO HEIGHT

END OF HEADER

 

# Mauritius

-20.00000, 57.54222

-20.00000, 57.54805

-19.99999, 57.56944

-19.99999, 57.65306

-20.29333, 57.78139

-20.52860, 57.51583

-20.46666, 57.29555

-20.00000, 57.54222

The example above shows a GEOTRANS coordinate input file containing Bonne coordinates and its resulting output file containing Geodetic coordinates. The input file header defines the projection type, datum and projection parameters, which for Bonne include the Central Meridian, Origin Latitude, False Easting, and False Northing.

British National Grid (BNG)

Note: The coordinates in this file processing example are located on the border of England.

Input File:

COORDINATES: British National Grid (BNG)

DATUM: OGB-7

# ELLIPSOID: AA

END OF HEADER

 

# England

TA 4198014582

TA 4253713645

TA 3982110347

TA 4198014582

Output File:

COORDINATES: Geodetic

DATUM: WGE

# ELLIPSOID: WE

NO HEIGHT

END OF HEADER

 

# England

53.60857, 0.14451

53.60000, 0.15249

53.57111, 0.11000

53.60857, 0.14451

The example above shows a GEOTRANS coordinate input file containing British National Grid coordinates defined relative to the OGB-7 datum and its resulting output file containing Geodetic coordinates. The input file header defines the coordinate type and datum.

Cassini

Input File:

PROJECTION: Cassini

DATUM: WGE

# ELLIPSOID: WE

CENTRAL MERIDIAN: 57.53847

ORIGIN LATITUDE: -20.26430

FALSE EASTING: 0

FALSE NORTHING: 0

END OF HEADER

 

# Mauritius

392, 29260

1003, 29260

3241, 29260

11991, 29256

25373, -3232

-2361, -29261

-25345, -22422

392, 29260

 

Output File:

COORDINATES: Geodetic

DATUM: WGE

# ELLIPSOID: WE

NO HEIGHT

END OF HEADER

 

# Mauritius

-20.00000, 57.54222

-20.00000, 57.54805

-19.99999, 57.56944

-20.00000, 57.65306

-20.29333, 57.78139

-20.52860, 57.51583

-20.46666, 57.29555

-20.00000, 57.54222

The example above shows a GEOTRANS coordinate input file containing Cassini coordinates and its resulting output file containing Geodetic coordinates. The input file header defines the projection type, datum and projection parameters, which for Cassini include the Central Meridian, Origin Latitude, False Easting, and False Northing.

Cylindrical Equal Area

Input File:

PROJECTION: Cylindrical Equal Area

DATUM: WGE

# ELLIPSOID: WE

CENTRAL MERIDIAN: 57.53847

ORIGIN LATITUDE: -20.26430

FALSE EASTING: 0

FALSE NORTHING: 0

END OF HEADER

 

# Mauritius

392, -2310093

1001, -2310093

3236, -2310093

11971, -2310093

25378, -2342591

-2365, -2368614

-25378, -2361766

392, -2310093

 

Output File:

COORDINATES: Geodetic

DATUM: WGE

# ELLIPSOID: WE

NO HEIGHT

END OF HEADER

 

# Mauritius

-20.00000, 57.54222

-20.00000, 57.54805

-20.00000, 57.56945

-20.00000, 57.65306

-20.29334, 57.78139

-20.52861, 57.51583

-20.46667, 57.29555

-20.00000, 57.54222

The example above shows a GEOTRANS coordinate input file containing Cylindrical Equal Area coordinates and its resulting output file containing Geodetic coordinates. The input file header defines the projection type, datum and projection parameters, which for Cylindrical Equal Area include the Central Meridian, Origin Latitude, False Easting, and False Northing.

Eckert IV

Input File:

PROJECTION: Eckert IV

DATUM: WGE

# ELLIPSOID: WE

CENTRAL MERIDIAN: 57.53847

FALSE EASTING: 0

FALSE NORTHING: 0

END OF HEADER

 

# Mauritius

344, -2601149

878, -2601149

2838, -2601149

10499, -2601149

22240, -2638325

-2071, -2668113

-22230, -2660273

344, -2601149

 

Output File:

COORDINATES: Geodetic

DATUM: WGE

# ELLIPSOID: WE

NO HEIGHT

END OF HEADER

 

# Mauritius

-20.00000, 57.54222

-20.00000, 57.54805

-20.00000, 57.56944

-20.00000, 57.65306

-20.29333, 57.78138

-20.52861, 57.51584

-20.46666, 57.29556

-20.00000, 57.54222

The example above shows a GEOTRANS coordinate input file containing Eckert IV coordinates and its resulting output file containing Geodetic coordinates. The input file header defines the projection type, datum and projection parameters, which for Eckert IV include the Central Meridian, False Easting, and False Northing.

Eckert VI

Input File:

PROJECTION: Eckert VI

DATUM: WGE

# ELLIPSOID: WE

CENTRAL MERIDIAN: 57.53847

FALSE EASTING: 0

FALSE NORTHING: 0

END OF HEADER

 

# Mauritius

350, -2511873

894, -2511873

2888, -2511873

10686, -2511873

22620, -2548411

-2105, -2577707

-22600, -2569995

350, -2511873

Output File:

COORDINATES: Geodetic

DATUM: WGE

# ELLIPSOID: WE

NO HEIGHT

END OF HEADER

 

# Mauritius

-20.00000, 57.54222

-20.00000, 57.54806

-20.00000, 57.56944

-20.00000, 57.65305

-20.29333, 57.78138

-20.52861, 57.51584

-20.46666, 57.29556

-20.00000, 57.54222

The example above shows a GEOTRANS coordinate input file containing Eckert VI coordinates and its resulting output file containing Geodetic coordinates. The input file header defines the projection type, datum and projection parameters, which for Eckert VI include the Central Meridian, False Easting, and False Northing.

Equidistant Cylindrical

Input File:

PROJECTION: Equidistant Cylindrical

DATUM: WGE

# ELLIPSOID: WE

CENTRAL MERIDIAN: 57.53847

STANDARD PARALLEL: -20.26430

FALSE EASTING: 0

FALSE NORTHING: 0

END OF HEADER

 

# Mauritius

391, -2223901

1000, -2223901

3231, -2223901

11953, -2223901

25339, -2256518

-2361, -2282680

-25339, -2275792

391, -2223901

Output File:

COORDINATES: Geodetic

DATUM: WGE

# ELLIPSOID: WE

NO HEIGHT

END OF HEADER

 

# Mauritius

-20.00000, 57.54222

-20.00000, 57.54806

-20.00000, 57.56944

-20.00000, 57.65306

-20.29333, 57.78138

-20.52861, 57.51584

-20.46667, 57.29556

-20.00000, 57.54222

The example above shows a GEOTRANS coordinate input file containing Equidistant Cylindrical coordinates and its resulting output file containing Geodetic coordinates. The input file header defines the projection type, datum and projection parameters, which for Equidistant Cylindrical include the Central Meridian, Standard Parallel, False Easting, and False Northing.

Gnomonic

Input File:

PROJECTION: Gnomonic

DATUM: WGE

# ELLIPSOID: WE

CENTRAL MERIDIAN: 57.53847

ORIGIN LATITUDE: -20.26430

FALSE EASTING: 0

FALSE NORTHING: 0

END OF HEADER

 

# Mauritius

392, 29390

1001, 29390

3236, 29389

11973, 29386

25335, -3246

-2357, -29390

-25306, -22521

392, 29390

 

Output File:

COORDINATES: Geodetic

DATUM: WGE

# ELLIPSOID: WE

NO HEIGHT

END OF HEADER

 

# Mauritius

-19.99999, 57.54222

-19.99999, 57.54805

-20.00000, 57.56944

-19.99999, 57.65305

-20.29332, 57.78139

-20.52861, 57.51584

-20.46667, 57.29556

-19.99999, 57.54222

The example above shows a GEOTRANS coordinate input file containing Gnomonic coordinates and its resulting output file containing Geodetic coordinates. The input file header defines the projection type, datum and projection parameters, which for Gnomonic include the Central Meridian, Origin Latitude, False Easting, and False Northing.

Lambert Conformal Conic (1 parallel)

Input File:

PROJECTION: Lambert Conformal Conic (1 parallel)

DATUM: WGE

# ELLIPSOID: WE

CENTRAL MERIDIAN: 57.53847

ORIGIN LATITUDE: -20.26430

SCALE FACTOR: 1.00000

FALSE EASTING: 0

FALSE NORTHING: 0

END OF HEADER

 

# Mauritius

392, 29260

1003, 29260

3241, 29260

11991, 29256

25373, -3232

-2361, -29261

-25345, -22422

392, 29260


Output File:

COORDINATES: Geodetic

DATUM: WGE

# ELLIPSOID: WE

NO HEIGHT

END OF HEADER

 

# Mauritius

-20.00000, 57.54222

-20.00000, 57.54805

-19.99999, 57.56944

-20.00000, 57.65305

-20.29333, 57.78139

-20.52860, 57.51583

-20.46666, 57.29555

-20.00000, 57.54222

 

The example above shows a GEOTRANS coordinate input file containing Lambert Conformal Conic (1 parallel) coordinates and its resulting output file containing Geodetic coordinates. The input file header defines the projection type, datum and projection parameters, which for Lambert Conformal Conic (1 parallel) include the Central Meridian, Origin Latitude, Scale Factor, False Easting, and False Northing.

Lambert Conformal Conic (2 parallel)

Input File:

PROJECTION: Lambert Conformal Conic (2 parallel)

DATUM: WGE

# ELLIPSOID: WE

CENTRAL MERIDIAN: 57.53847

ORIGIN LATITUDE: -20.26430

STANDARD PARALLEL ONE: -20.52861

STANDARD PARALLEL TWO: -20.00000

FALSE EASTING: 0

FALSE NORTHING: 0

END OF HEADER

 

# Mauritius

392, 29260

1003, 29260

3241, 29260

11991, 29256

25373, -3232

-2361, -29261

-25345, -22422

392, 29260

 

Output File:

COORDINATES: Geodetic

DATUM: WGE

# ELLIPSOID: WE

NO HEIGHT

END OF HEADER

 

# Mauritius

-19.99999, 57.54222

-19.99999, 57.54805

-19.99999, 57.56944

-19.99999, 57.65306

-20.29333, 57.78139

-20.52861, 57.51583

-20.46666, 57.29555

-19.99999, 57.54222

The example above shows a GEOTRANS coordinate input file containing Lambert Conformal Conic (2 parallel) coordinates and its resulting output file containing Geodetic coordinates. The input file header defines the projection type, datum and projection parameters, which for Lambert Conformal Conic (2 parallel) include the Central Meridian, Origin Latitude, Standard Parallel One, Standard Parallel Two, False Easting, and False Northing.

Mercator

Input File:

PROJECTION: Mercator

DATUM: WGE

# ELLIPSOID: WE

CENTRAL MERIDIAN: 57.53847

LATITUDE OF TRUE SCALE: -20.26430

SCALE FACTOR: 0.93848

FALSE EASTING: 0

FALSE NORTHING: 0

END OF HEADER

 

# Mauritius

392, -2119489

1001, -2119489

3236, -2119489

11971, -2119489

25378, -2151939

-2365, -2178011

-25378, -2171143

392, -2119489

 

Output File:

COORDINATES: Geodetic

DATUM: WGE

# ELLIPSOID: WE

NO HEIGHT

END OF HEADER

 

# Mauritius

-20.00000, 57.54222

-20.00000, 57.54805

-20.00000, 57.56945

-20.00000, 57.65306

-20.29333, 57.78139

-20.52861, 57.51583

-20.46667, 57.29555

-20.00000, 57.54222

The example above shows a GEOTRANS coordinate input file containing Mercator coordinates and its resulting output file containing Geodetic coordinates. The input file header defines the projection type, datum and projection parameters, which for Mercator include the Central Meridian, Latitude of True Scale, Scale Factor, False Easting, and False Northing.

Miller Cylindrical

Input File:

PROJECTION: Miller Cylindrical

DATUM: WGE

# ELLIPSOID: WE

CENTRAL MERIDIAN: 57.53847

FALSE EASTING: 0

FALSE NORTHING: 0

END OF HEADER

 

# Mauritius

417, -2253382

1066, -2253382

3444, -2253382

12741, -2253382

27011, -2287333

-2517, -2314595

-27011, -2307415

417, -2253382

Output File:

COORDINATES: Geodetic

DATUM: WGE

# ELLIPSOID: WE

NO HEIGHT

END OF HEADER

 

# Mauritius

-20.00000, 57.54222

-20.00000, 57.54806

-20.00000, 57.56944

-20.00000, 57.65305

-20.29333, 57.78139

-20.52861, 57.51583

-20.46667, 57.29555

-20.00000, 57.54222

The example above shows a GEOTRANS coordinate input file containing Miller Cylindrical coordinates and its resulting output file containing Geodetic coordinates. The input file header defines the projection type, datum and projection parameters, which for Miller Cylindrical include the Central Meridian, False Easting, and False Northing.

Mollweide

Input File:

PROJECTION: Mollweide

DATUM: WGE

# ELLIPSOID: WE

CENTRAL MERIDIAN: 57.53847

FALSE EASTING: 0

FALSE NORTHING: 0

END OF HEADER

 

# Mauritius

361, -2450843

923, -2450843

2984, -2450843

11039, -2450843

23374, -2486208

-2176, -2514556

-23358, -2507094

361, -2450843

Output File:

COORDINATES: Geodetic

DATUM: WGE

# ELLIPSOID: WE

NO HEIGHT

END OF HEADER

 

# Mauritius

-20.00000, 57.54222

-20.00000, 57.54805

-20.00000, 57.56944

-20.00000, 57.65306

-20.29333, 57.78138

-20.52861, 57.51583

-20.46667, 57.29555

-20.00000, 57.54222

The example above shows a GEOTRANS coordinate input file containing Mollweide coordinates and its resulting output file containing Geodetic coordinates. The input file header defines the projection type, datum and projection parameters, which for Mollweide include the Central Meridian, False Easting, and False Northing.

New Zealand Map Grid (NZMG)

Note: The coordinates in this file processing example are located on the border of New Zealand.

Input File:

PROJECTION: New Zealand Map Grid (NZMG)

DATUM: GEO

# ELLIPSOID: IN

END OF HEADER

 

# New Zealand

2165829, 5392600

2163793, 5390006

2155894, 5392906

2157669, 5393192

2157770, 5393486

Output File:

COORDINATES: Geodetic

DATUM: WGE

# ELLIPSOID: WE

NO HEIGHT

END OF HEADER

 

# New Zealand

-46.58992, 168.51088

-46.61222, 168.48249

-46.58223, 168.38166

-46.58055, 168.40500

-46.57796, 168.40653

The example above shows a GEOTRANS coordinate input file containing New Zealand Map Grid coordinates defined relative to the GEO datum and its resulting output file containing Geodetic coordinates. The input file header defines the projection type and datum.

Ney's (Modified Lambert Conformal Conic)

Input File:

PROJECTION: Ney's (Modified Lambert Conformal Conic)

DATUM: WGE

# ELLIPSOID: WE

CENTRAL MERIDIAN: 57.53847

ORIGIN LATITUDE: -20.26430

STANDARD PARALLEL ONE: 71.00000

# STANDARD PARALLEL TWO: 89.99972

FALSE EASTING: 0

FALSE NORTHING: 0

END OF HEADER

 

# Mauritius

566, 42140

1447, 42140

4675, 42139

17297, 42123

36471, -4697

-3384, -42008

-36354, -32251

566, 42140

Output File:

COORDINATES: Geodetic

DATUM: WGE

# ELLIPSOID: WE

NO HEIGHT

END OF HEADER

 

# Mauritius

-20.00000, 57.54222

-20.00000, 57.54806

-19.99999, 57.56944

-19.99999, 57.65306

-20.29333, 57.78139

-20.52860, 57.51583

-20.46666, 57.29556

-20.00000, 57.54222

The example above shows a GEOTRANS coordinate input file containing Ney's (Modified Lambert Conformal Conic) coordinates and its resulting output file containing Geodetic coordinates. The input file header defines the projection type, datum and projection parameters, which for Ney's (Modified Lambert Conformal Conic) include the Central Meridian, Origin Latitude, Standard Parallel One, Standard Parallel Two (is optional, but, if listed, it must be a comment), False Easting, and False Northing.

Oblique Mercator

Input File:

PROJECTION: Oblique Mercator

DATUM: WGE

# ELLIPSOID: WE

ORIGIN LATITUDE: -20.26430

LATITUDE ONE: -20.52861

LONGITUDE ONE: 57.29556

LATITUDE TWO: -20.00000

LONGITUDE TWO: 57.78139

SCALE FACTOR: 1.00000

FALSE EASTING: 0

FALSE NORTHING: 0

END OF HEADER

 

# Mauritius

333, 29260

943, 29260

3182, 29260

11932, 29256

25314, -3232

-2420, -29261

-25404, -22422

333, 29260

Output File:

COORDINATES: Geodetic

DATUM: WGE

# ELLIPSOID: WE

NO HEIGHT

END OF HEADER

 

# Mauritius

-20.00000, 57.54223

-20.00000, 57.54806

-19.99999, 57.56946

-20.00000, 57.65307

-20.29333, 57.78140

-20.52860, 57.51585

-20.46666, 57.29557

-20.00000, 57.54223

The example above shows a GEOTRANS coordinate input file containing Oblique Mercator coordinates and its resulting output file containing Geodetic coordinates. The input file header defines the projection type, datum and projection parameters, which for Oblique Mercator include the Origin Latitude, Latitude 1, Longitude 1, Latitude 2, Longitude 2, Scale Factor, False Easting, and False Northing.

Orthographic

Input File:

PROJECTION: Orthographic

DATUM: WGE

# ELLIPSOID: WE

CENTRAL MERIDIAN: 57.53847

ORIGIN LATITUDE: -20.26430

FALSE EASTING: 0

FALSE NORTHING: 0

END OF HEADER

 

# Mauritius

392, 29389

1001, 29389

3236, 29389

11973, 29385

25334, -3246

-2357, -29389

-25306, -22520

392, 29389

 

Output File:

COORDINATES: Geodetic

DATUM: WGE

# ELLIPSOID: WE

NO HEIGHT

END OF HEADER

 

# Mauritius

-20.00000, 57.54222

-20.00000, 57.54805

-20.00000, 57.56944

-20.00000, 57.65306

-20.29332, 57.78138

-20.52860, 57.51584

-20.46666, 57.29555

-20.00000, 57.54222

The example above shows a GEOTRANS coordinate input file containing Orthographic coordinates and its resulting output file containing Geodetic coordinates. The input file header defines the projection type, datum and projection parameters, which for Orthographic include the Central Meridian, Origin Latitude, False Easting, and False Northing.

Polar Stereographic

Note: The coordinates in this file processing example are located on the border of Greenland.

Input File:

PROJECTION: Polar Stereographic

DATUM: WGE

# ELLIPSOID: WE

LONGITUDE DOWN FROM POLE: -40.00000

LATITUDE OF TRUE SCALE: 73.00000

FALSE EASTING: 0

FALSE NORTHING: 0

END OF HEADER

 

# Greenland

24659, -706133

43628, -704239

52632, -702768

53574, -697446

60990, -711259

56786, -699971

72790, -692551

77548, -695128

85222, -694075

97322, -692482

 

Output File:

COORDINATES: Geodetic

DATUM: WGE

# ELLIPSOID: WE

NO HEIGHT

END OF HEADER

 

# Greenland

83.53944, -37.99998

83.54833, -36.45502

83.55611, -35.71698

83.60389, -35.60748

83.47278, -35.09891

83.57861, -35.36197

83.63250, -34.00000

83.60444, -33.63444

83.60584, -32.99998

83.60584, -32.00000

The example above shows a GEOTRANS coordinate input file containing Polar Stereographic coordinates and its resulting output file containing Geodetic coordinates. The input file header defines the projection type, datum and projection parameters, which for Polar Stereographic include the Longitude Down From Pole, Latitude of True Scale, False Easting, and False Northing.

Polyconic

Input File:

PROJECTION: Polyconic

DATUM: WGE

# ELLIPSOID: WE

CENTRAL MERIDIAN: 57.53847

ORIGIN LATITUDE: -20.26430

FALSE EASTING: 0

FALSE NORTHING: 0

END OF HEADER

 

# Mauritius

392, 29260

1003, 29260

3241, 29260

11991, 29256

25373, -3232

-2361, -29261

-25345, -22422

392, 29260

 

Output File:

COORDINATES: Geodetic

DATUM: WGE

# ELLIPSOID: WE

NO HEIGHT

END OF HEADER

 

# Mauritius

-20.00000, 57.54222

-20.00000, 57.54805

-19.99999, 57.56944

-20.00000, 57.65306

-20.29333, 57.78139

-20.52860, 57.51583

-20.46666, 57.29555

-20.00000, 57.54222

The example above shows a GEOTRANS coordinate input file containing Polyconic coordinates and its resulting output file containing Geodetic coordinates. The input file header defines the projection type, datum and projection parameters, which for Polyconic include the Central Meridian, Origin Latitude, False Easting, and False Northing.

Sinusoidal

Input File:

PROJECTION: Sinusoidal

DATUM: WGE

# ELLIPSOID: WE

CENTRAL MERIDIAN: 57.53847

FALSE EASTING: 0

FALSE NORTHING: 0

END OF HEADER

 

# Mauritius

392, -2212366

1003, -2212366

3241, -2212366

11991, -2212366

25373, -2244840

-2361, -2270887

-25345, -2264030

392, -2212366

 

Output File:

COORDINATES: Geodetic

DATUM: WGE

# ELLIPSOID: WE

NO HEIGHT

END OF HEADER

 

# Mauritius

-20.00000, 57.54222

-20.00000, 57.54805

-20.00000, 57.56944

-20.00000, 57.65306

-20.29333, 57.78139

-20.52861, 57.51583

-20.46667, 57.29555

-20.00000, 57.54222

The example above shows a GEOTRANS coordinate input file containing Sinusoidal coordinates and its resulting output file containing Geodetic coordinates. The input file header defines the projection type, datum and projection parameters, which for Sinusoidal include the Central Meridian, False Easting, and False Northing.

Stereographic

Input File:

PROJECTION: Stereographic

DATUM: WGE

# ELLIPSOID: WE

CENTRAL MERIDIAN: 57.53847

ORIGIN LATITUDE: -20.26430

FALSE EASTING: 0

FALSE NORTHING: 0

END OF HEADER

 

# Mauritius

392, 29389

1001, 29389

3236, 29389

11973, 29385

25334, -3246

-2357, -29390

-25306, -22520

392, 29389

Output File:

COORDINATES: Geodetic

DATUM: WGE

# ELLIPSOID: WE

NO HEIGHT

END OF HEADER

 

# Mauritius

-20.00000, 57.54222

-20.00000, 57.54805

-20.00000, 57.56944

-20.00000, 57.65306

-20.29332, 57.78138

-20.52861, 57.51584

-20.46666, 57.29556

-20.00000, 57.54222

The example above shows a GEOTRANS coordinate input file containing Stereographic coordinates and its resulting output file containing Geodetic coordinates. The input file header defines the projection type, datum and projection parameters, which for Stereographic include the Central Meridian, Origin Latitude, False Easting, and False Northing.

Transverse Cylindrical Equal Area

Input File:

PROJECTION: Transverse Cylindrical Equal Area

DATUM: WGE

# ELLIPSOID: WE

CENTRAL MERIDIAN: 57.53847

ORIGIN LATITUDE: -20.26430

SCALE FACTOR: 1.00000

FALSE EASTING: 0

FALSE NORTHING: 0

END OF HEADER

 

# Mauritius

392, 29260

1003, 29260

3241, 29260

11991, 29256

25373, -3232

-2361, -29261

-25345, -22422

392, 29260

Output File:

COORDINATES: Geodetic

DATUM: WGE

# ELLIPSOID: WE

NO HEIGHT

END OF HEADER

 

# Mauritius

-20.00000, 57.54222

-20.00000, 57.54805

-19.99999, 57.56944

-20.00000, 57.65306

-20.29333, 57.78139

-20.52860, 57.51583

-20.46666, 57.29555

-20.00000, 57.54222

The example above shows a GEOTRANS coordinate input file containing Transverse Cylindrical Equal Area coordinates and its resulting output file containing Geodetic coordinates. The input file header defines the projection type, datum and projection parameters, which for Transverse Cylindrical Equal Area include the Central Meridian, Origin Latitude, Scale Factor, False Easting, and False Northing.

Transverse Mercator

Input File:

PROJECTION: Transverse Mercator

DATUM: WGE

# ELLIPSOID: WE

CENTRAL MERIDIAN: 57.53847

ORIGIN LATITUDE: -20.26430

SCALE FACTOR: 1.00000

FALSE EASTING: 0

FALSE NORTHING: 0

END OF HEADER

 

# Mauritius

392, 29260

1003, 29260

3241, 29260

11991, 29256

25373, -3232

-2361, -29261

-25345, -22422

392, 29260

Output File:

COORDINATES: Geodetic

DATUM: WGE

# ELLIPSOID: WE

NO HEIGHT

END OF HEADER

 

# Mauritius

-20.00000, 57.54222

-20.00000, 57.54805

-19.99999, 57.56944

-20.00000, 57.65306

-20.29333, 57.78139

-20.52860, 57.51583

-20.46666, 57.29555

-20.00000, 57.54222

The example above shows a GEOTRANS coordinate input file containing Transverse Mercator coordinates and its resulting output file containing Geodetic coordinates. The input file header defines the projection type, datum and projection parameters, which for Transverse Mercator include the Central Meridian, Origin Latitude, Scale Factor, False Easting, and False Northing.

Van der Grinten

Input File:

PROJECTION: Van der Grinten

DATUM: WGE

# ELLIPSOID: WE

CENTRAL MERIDIAN: 57.53847

FALSE EASTING: 0

FALSE NORTHING: 0

END OF HEADER

 

# Mauritius

412, -2252056

1052, -2252056

3400, -2252056

12580, -2252056

26659, -2285953

-2483, -2313169

-26653, -2306002

412, -2252056

Output File:

COORDINATES: Geodetic

DATUM: WGE

# ELLIPSOID: WE

NO HEIGHT

END OF HEADER

 

# Mauritius

-20.00000, 57.54222

-20.00000, 57.54805

-20.00000, 57.56944

-20.00000, 57.65306

-20.29333, 57.78139

-20.52861, 57.51584

-20.46667, 57.29555

-20.00000, 57.54222

The example above shows a GEOTRANS coordinate input file containing Van der Grinten coordinates and its resulting output file containing Geodetic coordinates. The input file header defines the projection type, datum and projection parameters, which for Van der Grinten include the Central Meridian, False Easting, and False Northing.

Format Options

The following file processing examples represent the various format options available in GEOTRANS.

Example 1:

Input File:

COORDINATES: Geodetic

DATUM: WGE

# ELLIPSOID: WE

ELLIPSOID HEIGHT

END OF HEADER

 

# Mauritius

-20.000000, 57.542221, 0

-20.000000, 57.548054, 0

-20.000000, 57.569443, 0

-20.000000, 57.653057, 0

-20.293333, 57.781387, 0

-20.528610, 57.515835, 0

-20.466667, 57.295555, 0

-20.000000, 57.542221, 0

Output File:

COORDINATES: Geodetic

DATUM: WGE

# ELLIPSOID: WE

ELLIPSOID HEIGHT

END OF HEADER

 

# Mauritius

20/0/0.0S, 57/32/32.0E, 0

20/0/0.0S, 57/32/53.0E, 0

20/0/0.0S, 57/34/10.0E, 0

20/0/0.0S, 57/39/11.0E, 0

20/17/36.0S, 57/46/53.0E, 0

20/31/43.0S, 57/30/57.0E, 0

20/28/0.0S, 57/17/44.0E, 0

20/0/0.0S, 57/32/32.0E, 0

The example above shows a GEOTRANS coordinate input file and its resulting output file containing Geodetic coordinates formatted with the following options: Geodetic Units – Degrees/Minutes/Seconds, Geodetic Separator – DD/MM/SS, Sign / Hemisphere – N/S, E/W, Longitude Range {-180, 180}, and Precision – 1m 0.1 Second.

Example 2:

Input File:

COORDINATES: Geodetic

DATUM: WGE

# ELLIPSOID: WE

ELLIPSOID HEIGHT

END OF HEADER

 

# Mauritius

-20.000000, 57.542221, 0

-20.000000, 57.548054, 0

-20.000000, 57.569443, 0

-20.000000, 57.653057, 0

-20.293333, 57.781387, 0

-20.528610, 57.515835, 0

-20.466667, 57.295555, 0

-20.000000, 57.542221, 0

Output File:

COORDINATES: Geodetic

DATUM: WGE

# ELLIPSOID: WE

ELLIPSOID HEIGHT

END OF HEADER

 

# Mauritius

20:0.000S, 57:32.533E, 0

20:0.000S, 57:32.883E, 0

20:0.000S, 57:34.167E, 0

20:0.000S, 57:39.183E, 0

20:17.600S, 57:46.883E, 0

20:31.717S, 57:30.950E, 0

20:28.000S, 57:17.733E, 0

20:0.000S, 57:32.533E, 0

The example above shows a GEOTRANS coordinate input file and its resulting output file containing Geodetic coordinates formatted with the following options: Geodetic Units – Degrees/Minutes, Geodetic Separator – DD:MM:SS, Sign / Hemisphere – N/S, E/W, Longitude Range {-180, 180}, and Precision – 1m 0.1 Second.

Example 3:

Input File:

COORDINATES: Geodetic

DATUM: WGE

# ELLIPSOID: WE

ELLIPSOID HEIGHT

END OF HEADER

 

# Mauritius

-20.000000, 57.542221, 0

-20.000000, 57.548054, 0

-20.000000, 57.569443, 0

-20.000000, 57.653057, 0

-20.293333, 57.781387, 0

-20.528610, 57.515835, 0

-20.466667, 57.295555, 0

-20.000000, 57.542221, 0

Output File:

COORDINATES: Geodetic

DATUM: WGE

# ELLIPSOID: WE

ELLIPSOID HEIGHT

END OF HEADER

 

# Mauritius

20 0 0.0S, 57 32 32.0E, 0

20 0 0.0S, 57 32 53.0E, 0

20 0 0.0S, 57 34 10.0E, 0

20 0 0.0S, 57 39 11.0E, 0

20 17 36.0S, 57 46 53.0E, 0

20 31 43.0S, 57 30 57.0E, 0

20 28 0.0S, 57 17 44.0E, 0

20 0 0.0S, 57 32 32.0E, 0

The example above shows a GEOTRANS coordinate input file and its resulting output file containing Geodetic coordinates formatted with the following options: Geodetic Units – Degrees/Minutes/Seconds, Geodetic Separator – DD MM SS, Sign / Hemisphere – N/S, E/W, Longitude Range {-180, 180}, and Precision – 1m 0.1 Second.

Example 4:

Input File:

COORDINATES: Geodetic

DATUM: WGE

# ELLIPSOID: WE

NO HEIGHT

END OF HEADER

 

# Greenland

83.53944, -37.99998

83.54833, -36.45502

83.55611, -35.71698

83.60389, -35.60748

83.47278, -35.09891

83.57861, -35.36197

83.63250, -34.00000

83.60444, -33.63444

83.60584, -32.99998

83.60584, -32.00000

Output File:

COORDINATES: Geodetic

DATUM: WGE

# ELLIPSOID: WE

ELLIPSOID HEIGHT

END OF HEADER

 

# Greenland

84N, 322E, 0

84N, 324E, 0

84N, 324E, 0

84N, 324E, 0

83N, 325E, 0

84N, 325E, 0

84N, 326E, 0

84N, 326E, 0

84N, 327E, 0

84N, 328E, 0

The example above shows a GEOTRANS coordinate input file and its resulting output file containing Geodetic coordinates formatted with the following options: Geodetic Units – Degrees, Geodetic Separator – DD MM SS, Sign / Hemisphere – N/S, E/W, Longitude Range {0, 360}, and Precision – 100,000m 1 Degree.

Example 5:

Input File:

COORDINATES: Geodetic

DATUM: WGE

# ELLIPSOID: WE

ELLIPSOID HEIGHT

END OF HEADER

 

# Mauritius

-20.000000, 57.542221, 0

-20.000000, 57.548054, 0

-20.000000, 57.569443, 0

-20.000000, 57.653057, 0

-20.293333, 57.781387, 0

-20.528610, 57.515835, 0

-20.466667, 57.295555, 0

-20.000000, 57.542221, 0

Output File:

COORDINATES: Geodetic

DATUM: WGE

# ELLIPSOID: WE

ELLIPSOID HEIGHT

END OF HEADER

 

# Mauritius

20.0S, 57.5E, 0

20.0S, 57.5E, 0

20.0S, 57.6E, 0

20.0S, 57.7E, 0

20.3S, 57.8E, 0

20.5S, 57.5E, 0

20.5S, 57.3E, 0

20.0S, 57.5E, 0

The example above shows a GEOTRANS coordinate input file and its resulting output file containing Geodetic coordinates formatted with the following options: Geodetic Units – Degrees, Geodetic Separator – DD MM SS, Sign / Hemisphere – N/S, E/W, Longitude Range {-180, 180}, and Precision – 10,000m 10 Minutes.

Example 6:

Input File:

COORDINATES: Geodetic

DATUM: WGE

# ELLIPSOID: WE

ELLIPSOID HEIGHT

END OF HEADER

 

# Mauritius

-20.000000, 57.542221, 0

-20.000000, 57.548054, 0

-20.000000, 57.569443, 0

-20.000000, 57.653057, 0

-20.293333, 57.781387, 0

-20.528610, 57.515835, 0

-20.466667, 57.295555, 0

-20.000000, 57.542221, 0

Output File:

COORDINATES: Geodetic

DATUM: WGE

# ELLIPSOID: WE

ELLIPSOID HEIGHT

END OF HEADER

 

# Mauritius

20.00S, 57.54E, 0

20.00S, 57.55E, 0

20.00S, 57.57E, 0

20.00S, 57.65E, 0

20.29S, 57.78E, 0

20.53S, 57.52E, 0

20.47S, 57.30E, 0

20.00S, 57.54E, 0

The example above shows a GEOTRANS coordinate input file and its resulting output file containing Geodetic coordinates formatted with the following options: Geodetic Units – Degrees, Geodetic Separator – DD MM SS, Sign / Hemisphere – N/S, E/W, Longitude Range {-180, 180}, and Precision – 1,000m 1 Minute.

Example 7:

Input File:

COORDINATES: Geodetic

DATUM: WGE

# ELLIPSOID: WE

ELLIPSOID HEIGHT

END OF HEADER

 

# Mauritius

-20.000000, 57.542221, 0

-20.000000, 57.548054, 0

-20.000000, 57.569443, 0

-20.000000, 57.653057, 0

-20.293333, 57.781387, 0

-20.528610, 57.515835, 0

-20.466667, 57.295555, 0

-20.000000, 57.542221, 0

Output File:

COORDINATES: Geodetic

DATUM: WGE

# ELLIPSOID: WE

ELLIPSOID HEIGHT

END OF HEADER

 

# Mauritius

20.000S, 57.542E, 0

20.000S, 57.548E, 0

20.000S, 57.569E, 0

20.000S, 57.653E, 0

20.293S, 57.781E, 0

20.529S, 57.516E, 0

20.467S, 57.296E, 0

20.000S, 57.542E, 0

The example above shows a GEOTRANS coordinate input file and its resulting output file containing Geodetic coordinates formatted with the following options: Geodetic Units – Degrees, Geodetic Separator – DD MM SS, Sign / Hemisphere – N/S, E/W, Longitude Range {-180, 180}, and Precision – 100m 10 Seconds.

Example 8:

Input File:

COORDINATES: Geodetic

DATUM: WGE

# ELLIPSOID: WE

ELLIPSOID HEIGHT

END OF HEADER

 

# Mauritius

-20.000000, 57.542221, 0

-20.000000, 57.548054, 0

-20.000000, 57.569443, 0

-20.000000, 57.653057, 0

-20.293333, 57.781387, 0

-20.528610, 57.515835, 0

-20.466667, 57.295555, 0

-20.000000, 57.542221, 0

Output File:

COORDINATES: Geodetic

DATUM: WGE

# ELLIPSOID: WE

ELLIPSOID HEIGHT

END OF HEADER

 

# Mauritius

20.0000S, 57.5422E, 0

20.0000S, 57.5481E, 0

20.0000S, 57.5694E, 0

20.0000S, 57.6531E, 0

20.2933S, 57.7814E, 0

20.5286S, 57.5158E, 0

20.4667S, 57.2956E, 0

20.0000S, 57.5422E, 0

The example above shows a GEOTRANS coordinate input file and its resulting output file containing Geodetic coordinates formatted with the following options: Geodetic Units – Degrees, Geodetic Separator – DD MM SS, Sign / Hemisphere – N/S, E/W, Longitude Range {-180, 180}, and Precision – 10m 1 Second.

Example 9:

Input File:

COORDINATES: Geodetic

DATUM: WGE

# ELLIPSOID: WE

ELLIPSOID HEIGHT

END OF HEADER

 

# Mauritius

-20.000000, 57.542221, 0

-20.000000, 57.548054, 0

-20.000000, 57.569443, 0

-20.000000, 57.653057, 0

-20.293333, 57.781387, 0

-20.528610, 57.515835, 0

-20.466667, 57.295555, 0

-20.000000, 57.542221, 0

Output File:

COORDINATES: Geodetic

DATUM: WGE

# ELLIPSOID: WE

ELLIPSOID HEIGHT

END OF HEADER

 

# Mauritius

20.000000S, 57.542221E, 0.0

20.000000S, 57.548054E, 0.0

20.000000S, 57.569443E, 0.0

20.000000S, 57.653057E, 0.0

20.293333S, 57.781387E, 0.0

20.528610S, 57.515835E, 0.0

20.466667S, 57.295555E, 0.0

20.000000S, 57.542221E, 0.0

The example above shows a GEOTRANS coordinate input file and its resulting output file containing Geodetic coordinates formatted with the following options: Geodetic Units – Degrees, Geodetic Separator – DD MM SS, Sign / Hemisphere – N/S, E/W, Longitude Range {-180, 180}, and Precision – 0.1m 0.01 Second.

Example 10:

Input File:

COORDINATES: Geodetic

DATUM: WGE

# ELLIPSOID: WE

ELLIPSOID HEIGHT

END OF HEADER

 

# Mauritius

-20.000000, 57.542221, 0

-20.000000, 57.548054, 0

-20.000000, 57.569443, 0

-20.000000, 57.653057, 0

-20.293333, 57.781387, 0

-20.528610, 57.515835, 0

-20.466667, 57.295555, 0

-20.000000, 57.542221, 0

Output File:

COORDINATES: Geodetic

DATUM: WGE

# ELLIPSOID: WE

ELLIPSOID HEIGHT

END OF HEADER

 

# Mauritius

20.0000000S, 57.5422210E, 0.00

20.0000000S, 57.5480540E, 0.00

20.0000000S, 57.5694430E, 0.00

20.0000000S, 57.6530570E, 0.00

20.2933330S, 57.7813870E, 0.00

20.5286100S, 57.5158350E, 0.00

20.4666670S, 57.2955550E, 0.00

20.0000000S, 57.5422210E, 0.00

The example above shows a GEOTRANS coordinate input file and its resulting output file containing Geodetic coordinates formatted with the following options: Geodetic Units – Degrees, Geodetic Separator – DD MM SS, Sign / Hemisphere – N/S, E/W, Longitude Range {-180, 180}, and Precision – 0.01m 0.001 Second.

Example 11:

Input File:

COORDINATES: Geodetic

DATUM: WGE

# ELLIPSOID: WE

ELLIPSOID HEIGHT

END OF HEADER

 

# Mauritius

-20.000000, 57.542221, 0

-20.000000, 57.548054, 0

-20.000000, 57.569443, 0

-20.000000, 57.653057, 0

-20.293333, 57.781387, 0

-20.528610, 57.515835, 0

-20.466667, 57.295555, 0

-20.000000, 57.542221, 0

Output File:

COORDINATES: Geodetic

DATUM: WGE

# ELLIPSOID: WE

ELLIPSOID HEIGHT

END OF HEADER

 

# Mauritius

20.00000000S, 57.54222100E, 0.000

20.00000000S, 57.54805400E, 0.000

20.00000000S, 57.56944300E, 0.000

20.00000000S, 57.65305700E, 0.000

20.29333300S, 57.78138700E, 0.000

20.52861000S, 57.51583500E, 0.000

20.46666700S, 57.29555500E, 0.000

20.00000000S, 57.54222100E, 0.000

The example above shows a GEOTRANS coordinate input file and its resulting output file containing Geodetic coordinates formatted with the following options: Geodetic Units – Degrees, Geodetic Separator – DD MM SS, Sign / Hemisphere – N/S, E/W, Longitude Range {-180, 180}, and Precision – 0.001m 0.0001 Second.