Genparse

Command Line Parser Generator
Edition 0.5.1, for Genparse version 0.5.1
11 October 2000

Mike Borella

Copyright (©) 1997-2000, Mike Borella

Permission is granted to make and distribute verbatim copies of this manual provided the
copyright notice and this permission notice are preserved on all copies.

Permission is granted to copy and distribute modified versions of this manual under the con-
ditions for verbatim copying, provided that the entire resulting derived work is distributed
under the terms of a permission notice identical to this one.

Permission is granted to copy and distribute translations of this manual into another lan-
guage, under the above conditions for modified versions, except that this permission notice
may be stated in a translation approved by the Author.

Table of Contents

1 Introduction............................... 1
2 Making Genparse Files..................... 2
2.1 A Simple Application............... 2

2.2 Adding Command Line Options 3

2.3 Simplifying Command Line Parsing with Genparse......... 5

2.3.1 Header Files..........., 6

2.3.2 ParserFiles........ ... 8

2.3.3 Main Program.............., 11

2.4 Include Files and Callbacks 13

2.5 CHHOutpub ..ot 14

2.5.1 Header File............ 15

252 ParserFile.............. 16

253 Callback File............ 19

2.5.4 Main Program................. 20

2.6 Idiosyncrasies.............ooeuueiiiin i 21

3 Genparse Options..............cevvvee... 23
4 Genparse File Grammar................... 24
5 TheFuture............................... 26
6 Some History.................... ..., 27

Chapter 1: Introduction 1

1 Introduction

The Genparse package allows the automated creation of command line parsing routines,
based on a command line option description file. Given a target language, Genparse outputs
a suitable parser. For example, in C, a function is created that reads the command line
parameters and stores their values in a data structure. In C++, a command line parsing
class is created, with member functions that return parameter values.

The goal of Genparse is to eliminate the effort required to write a command line parser
for every newly-developed program. Typically, these parsers all follow a very similar format,
with a series of calls to the getopt () or getopt_long() library functions. Genparse allows
users to specify their program’s command line options in a concise text file (hereafter, a
"Genparse File"). Genparse reads this file, and produces the appropriate parsing routines
in the user’s language of choice. Users may call the parser’s functions from their main code
in order to obtain the values of the parameters.

In addition to providing a simple interface to the parameters, Genparse also has the
following features:

e A default value may be provided for each parameter.
e Both short (-o0) and long (--option) parameters are supported.

e For parameters that take numerical values, Genparse can make sure that the input
values fall within a given range.

e A usage() function is automatically created, which can be used to describe a program’s
command line parameters. Genparse also allows a description string to be associated
with each parameter. These strings will be displayed in the usage () function.

e Extra include files may be added to any command line parser.

e FEach parameter can have a callback function associated with it. Genparse will au-
tomatically create a skeleton for callback functions, which the user can fill in. Also,
global callback functions can be specified.

Currently, we do not believe that Genparse has any significant limitations. It cannot
handle dependencies between different options, but the user can write callback function
to accomplish this task. A virtually unlimited number of long command line options are
available, but only 52 single-character options can be used by a given program.

Mail suggestions and bug reports for Genparse to mike@borella.net. The latest version
of Genparse can always be found at http://genparse.sourgeforge.net.

Chapter 2: Making Genparse Files 2

2 Making Genparse Files

In this section we discuss how to write Genparse files and how to invoke Genparse on
these files. We take a pedagogical approach, walking through a very simple example program
and showing how Genparse can simplify its development.

2.1 A Simple Application

Suppose that we want to write a C program that outputs a given text file some number
of times. This is a simple, and perhaps not terribly useful program, but its simplicity will
help illustrate the utility of Genparse.

Our program, mycopy1, might look like this:
/* mycopyl.c */

#include <stdio.h>
#include <stdlib.h>

int main(int argc, char *argv[])
{

int ¢, i, n;

FILE *fp;

n = atoi(argv[1]);
fp = fopen(argv([2],"r");

for (i = 0; i < n; i++)
{
while((c = fgetc(fp)) != EOF)
fputc(c, stdout);
rewind(£fp);
}

fclose(fp);
return O;

3

The user is expected to invoke mycopyl with two items on the command line: an inte-
ger followed by a filename. The former is the number of times that the latter should be
displayed. While this program accomplishes what we set out to do, it is not very robust
nor user friendly. For example, if the user specifies a negative integer, the program does
not display a warning or error message (in fact, it displays nothing). If the user does not
know what is expected on the command line, how will he or she find this information out
(assuming that nice documentation, such as what you are now reading, does not exist for
mycopyl). Furthermore, wouldn’t this program be more flexible if there were a default
number of iterations, the user could specify the command line parameters in any order or
omit some altogether?

All of these issues, and perhaps others, can be addressed in a number of ways. Tra-
ditionally, the author of mycopyl would publish the command line format, typically in a

Chapter 2: Making Genparse Files 3

man page, and write a routine to pull the command line parameters out of the argv array,
assuming that the format was followed (not unlike what we’ve done for mycopy1). However,
as the number of command line parameters increases, this task becomes much more difficult
and cumbersome.

With the introduction of the getopt () and getopt_long() functions, now part of the
GNU C Library, a great deal of the command line parsing burden was lifted from program-
mers. The getopt() function takes in an argv-style command line and assumes that it
contains a series of command line options. An option is indicated with a single character
preceded by a dash - for example, ‘=0’ or ‘=Z’. These options may be followed by a command
line parameter - for example, ‘-0’ or ‘-Z 3’. Using getopt we could add an ‘-i’ to allow the
number of iterations to be specified. The advantage to doing so is that it would no longer
matter where on the command line ‘-1’ appears, and if ‘-i’ does not appear at all, we can
assign a default number of iterations.

The getopt_long () function extends getopt (), by allowing long options to coexist with
single character options. Long options are preceded by two dashes and may be more than
one character long - for example ‘--iterations’. Long options may also take parameters,
in the form ‘~-option param’ or ‘--option=param’.

2.2 Adding Command Line Options

From the previous section’s mycopyl, we will now add command line option parsing
with getopt_long() to create mycopy2. Along the way we’ll add a small number of useful
features.

/* mycopy2.c */

#include <stdio.h>
#include <stdlib.h>
#include <getopt.h>

int main(int argc, char *argvl[])
{

int c, 1i;

FILE *fp;

extern char *optarg;

extern int optind;

int option_index = 0;

char ch;

int help, iterations;

int errflg = 0;

static struct option long_options[] =
{

{"help", O, 0, ’h’},

{"iterations", 1, 0, ’i’},

{0, 0, 0, O}

};

Chapter 2: Making Genparse Files

help = 0;
iterations

1;

while ((ch = getopt_long(argc, argv, "hi:", long_options,
&option_index)) != EOF)

{
switch(ch)
{
case ’h’:
help = 1;
break;

case ’i’:
iterations = atoi(optarg);
if (iterations < 0)
{
fprintf(stderr, "error: iterations must be >= 0\n");
errflg ++;
}

break;

default:
errflgt++;

i
} /* while */

if (errflg || help)

{
printf("usage: %s [-i] <file>\n", argv[0]);
printf(" [-h] [--help] Print help screen \n");
printf(" [-i] [--iterations] Number of times to \

output <file>\n");

exit(1);

}

if (optind >= argc)
fp = stdin;
else
fp = fopen(argv[optind],"r");

for (i = 0; i < iteratiomns; i++)
{
while((c = fgetc(fp)) != EOF)
fputc(c, stdout);
rewind(£fp);
}

fclose(fp);

Chapter 2: Making Genparse Files 5

return O;

}

This program performs the same function as mycopy1 but does so in a more flexible and
reliable fashion. Two command line options are supported, ‘-h’ and ‘-=i’. When ‘-h’, or its
long form, ‘~-help’, appears on the command line, all other options are ignored and a usage
message is displayed. The ‘=i’ option allows the user to specify the number of iterations, as
discussed above. It also has a long form, ‘--iterations’. The number of iterations defaults
to 1 if ‘-1’ does not appear on the command line, and the program prevents negative values
from being specified with ‘=i’

The usage message is a useful way of summarizing a program’s options without needed
a man or info page. There are three ways that the usage message for mycopy2 will be
displayed:

e If the ‘-h’ or ‘--help’ options appear on the command line.
e If an unknown option appears on the command line.

e If the ‘-1’ option appears with a negative value.

A nice feature of getopt () and getopt_long() is that they will rearrange the command
line within argv so that all non-options follow all of the options'. The external variable
optind is set to point to the first non-option in the re-arranged argv. Thus, by comparing
optind to argc, we can determine whether or not an input file has been specified. If there
is no input file on the command line, we can redirect mycopy2 to use stdin.

While mycopy2 is an improvement over mycopyl, there are a number of drawbacks to
using getopt () in all of your programs. The most obvious is time. In mycopy2, two-thirds
(about 50 lines) of the code does the command line parsing, and only two options are
supported. If there we’re 10 options, the command line parsing code could easily reach
200 lines or more. Additionally, since each option’s parameter may need to be checked for
validity and assigned to a variable, this becomes a tedious process that can be error prone.

Observing the source code for mycopy?2, it becomes clear that, like any repetitive task,
the command line parsing code follows a number of simple patterns. If these patterns can
be abstracted and generalized so that the user can indicate option use in a concise format,
most, if not all, of the parsing code can be automatically generated. With this thought in
mind, we turn our attention to Genparse.

2.3 Simplifying Command Line Parsing with Genparse

Genparse automatically creates command line parsing code, not unlike the code in
mycopy2.c. It creates two or three files: a header file, a parsing file, and an optional
callback file. In this section, we’ll write a Genparse specification for our file copying pro-
gram and examine the parser that it creates.

Genparse runs on a simple input file, which we’ll call a Genparse file. In a Genparse
file, each command line option is specified on one or more lines. The following code is a
Genparse file for mycopy3.

! argv[0] is not rearranged - it remains in its place.

Chapter 2: Making Genparse Files 6

/* mycopy3.gp */

#mandatory file

i / iterations int 1 [0...] "Number of times to output <file>."
o / outfile string {""} "Output file."

The naming of this file follows the convention of all Genparse files ending in the extension
.gp.

Let’s walk through mycopy3.gp. The first line is a comment. It is ignored by Genparse.
The second line indicates that there is a "mandatory" argument for mycopy3, that being the
file to copy. The #mandatory directive does not actually check whether or not the argument
exists - it only is used to create friendlier output for the usage () function.

The third line is the first option specification. This is the ‘=i’ option, which, as before,
may be specified in long form as ‘--iterations’. Our mycopy3.gp file indicates that ‘-i’
must take an integer parameter, the default value of which is 1. The allowed range is non-
negative. The final part of the third line is a description of the option’s usage (to appear
in the usage () function).

The fourth line introduces a new option, that was not in mycopy2. The ‘-0’ option

takes a string parameter (where a "string" is any series of characters) with a default value
of empty. As indicated by the description, this option is used to specify an output file to
which mycopy3’s output will be directed.

Genparse can be invoked on mycopy3.gp in a number of ways (Yes, Genparse has its
own command line options! See Chapter 3 [Genparse Options|, page 23.), but we’ll invoke
it as follows.

genparse -o mycopy3_clp mycopy3.gp
This command tells Genparse to run on mycopy3.gp and to output program files named

with mycopy3_clp. This particular Genparse file creates only a header file and a parser file
since no callbacks are specified. Let’s first take a look at the header file, mycopy3_clp.h.

2.3.1 Header Files

Below, we walk through mycopy3_clp.h, an example header file created by Genparse.
Header files, such as this one, must be included in all linked code that needs to access the
command line parameter values.

/* mycopy3_clp.h */
#include <stdio.h>

#ifndef bool
typedef enum bool_t
{

false = 0, true
} bool;
#endif

/* customized structure for command line parameters */
struct arg_t

{

Chapter 2: Making Genparse Files 7

int i;

char * o;

bool h;

bool q;

bool v;

int optind;
};

/* function prototypes */
struct arg_t * Cmdline(int, char *x*);
void usage(char *);
void free_args(struct arg_t *);
Although "real" Genparse output files begin with a section of comments, for purposes
of saving space, we’ll replace all of those with a short comment containing only the file’s
name.

A Genparse-created header file contains four major sections: (1) includes and type defi-
nitions, (2) the definition of struct arg_t, (3) parsing function prototypes, and (4) callback
function prototypes. Since we are not using callbacks in this example, only the first three
sections appear in this header file.

The file begins with a list of header files to include. Including stdio.h is the default, and
other includes may be specified in the Genparse file. Then the bool type is conditionally
defined. While bool is typically predefined in C++, it is not in C. It comes in handy as a
type for all flag options, which can only be on or off (true or false).

The struct arg_t structure contains a variable for each of the options defined in
mycopy3.gp. This include i, an integer, and o, a character pointer. For C output, all
variables defined to be strings in Genparse files are declared as character pointers. For C++
output, the native C++ string type is used.

In addition to the user-defined options, Genparse adds two extra flag options, ‘~h’ and
‘~v’. The ‘-h’ option (long form of ‘--~help’) will cause the usage () function to be called,
and the program to terminate. The ‘v’ option (long form of ‘--version’) will be passed
back for the calling function to process. It is intended that the caller will display the
program’s version number if this option is set. Note that if the calling program does not
process the ‘=v’ flag, its behavior will not be affected by this flag.

The optind variable records the value of the optind static variable that is used by
getopt () and getopt_long(). However, Genparse has changed the behavior of this variable
slightly. (See Section 2.3.2 [Parser Files|, page 8.)

The final section of mycopy3_clp.h consists of function prototypes for the command
line parser Cmdline ()2, the usage function, and the free_args() function. The Cmdline ()
function is where the meat of Genparse processing occurs. It takes as arguments argc and
argv, and returns the structure containing the values of the options. Typically, the parsing
function should be called at the beginning of the program.

The usage function lists the command line options for the program, as well as any
mandatory command line parameters. Once this information is displayed, the program is

2 The name of the command line parsing function can be user-defined. See Chapter 3
[Genparse Options|, page 23.

Chapter 2: Making Genparse Files 8

terminated. For example, the usage function output for mycopy3, as invoked by the ‘-h’
option, is as follows:
usage: mycopy3 [-iohqv] file
[-1] [--iterations] Number of times to output <file>. (default = 1)
[-o] [--outfile] Output file.
[ch] [--help 1] Display help information. (default = 0)
[-v] [--version] Output version. (default = 0)

After displaying a brief list of all single-character options and mandatory options, the
usage message lists all options in short and long forms, along with user-defined descriptions
and each option’s default value.

The free_args() function should be called if the main program no longer needs to use
the struct arg_t structure. This function will deallocate all memory associated with the
structure and its fields.

2.3.2 Parser Files

In this section we examine the parser file generated from running Genparse on mycopy3. gp.
/* mycopy3_clp.c */

#include <string.h>
#include <unistd.h>
#include <stdlib.h>
#include <getopt.h>
#include "mycopy3_clp.h"

k%
** usage ()
*x

** Print out usage information, then exit
*ok

void usage(char *executable)
{
printf("usage: %s [-iohqv] file \n", executable);
printf(" [-i] ");
printf("[--iterations] ");
printf ("Number of times to output <file>. ");
printf (" (default = 1)");
printf ("\n");
printf(" [-0 1 ");
printf("[--outfile 1 ");
printf ("Output file. ");
printf("\n");
printf(" [-h 1 ");
printf("[--help 1 ");
printf ("Display help information. ");

Chapter 2: Making Genparse Files 9

printf (" (default = 0)");
printf("\n");

printf(" [-v] ");
printf("[--version] ");
printf ("Output version. ");
printf (" (default = 0)");
printf ("\n");

exit(1);

*ok
*x*x free_args()
*ok

*% Call this to free the memory that was dynamically allocated by the parser.
*ok

void free_args(struct arg_t *my_args)

{
if (my_args->o != NULL) free(my_args->o);
free(my_args);

¥

*k
**x Cmdline()
Kk

**x Parse the argv array into the command line structure
*k

struct arg_t *Cmdline(int argc, char *argvl[])
{

extern char *optarg;

extern int optind;

int option_index = 0;

char c;

struct arg_t *my_args;

int errflg = 0;

static struct option long_options[] =
{
{"iterations", 1, 0, ’i’},
{"outfile", 1, 0, ’0’},
{"help", 0, 0, ’h’},
{"quiet", 0, 0, ’q’},
{"version", 0, 0, ’v’},

Chapter 2: Making Genparse Files 10

{0, 0, 0, 0O}
};

my_args = (struct arg_t *) malloc (sizeof(struct arg_t));

my_args->i = 1;

my_args->o = NULL;
my_args->h = false;
my_args->q = false;
my_args->v = false;

while ((c = getopt_long(argc, argv, "i:o:hqv", long_options,
&option_index)) != EOF)

{
switch(c)
{
case ’i’:

my_args->i = atoi(optarg);
if (my_args->i < 0)
{
fprintf(stderr, "parameter range error: i must be >= O\n");
errflg++;

3

break;

case ’0’:
my_args->o0 = strdup(optarg) ;
break;

case ’h’:
my_args—>h = true;
usage (argv[0]);
break;

case ’'q’:
my_args—>q
break;

true;

case ’v’:
my_args—>v
break;

true;
default:
usage (argv[0]);

}
} /% while x/

if (errflg)

Chapter 2: Making Genparse Files 11

usage (argv[0]);

if (optind >= argc)
my_args—>optind = 0;

else
my_args->optind

return my_args;

optind;

}

The parser file consists of three main functions. The usage() function displays the
program’s usage information, then terminates. The free_args() function frees all memory
that was dynamically allocated by the parsing function. The parsing function, named
Cmdline() in this case®, reads the command line and returns a struct arg_t containing
the command line parameters.

Since the first two functions are straightforward, we will not examine them in detail.
Instead, we will focus our attention on Cmdline(). This function begins by defining a
struct option array based on the specification in the mycopy3.gp file. This array will tell
getopt_long() what options to expect on the command line. The struct arg_t is then
initialized and the default parameter values from mycopy3. gp are set. Once this is complete,
getopt_long() is looped through until all command line options have been processed. Each
option has its own case in the switch statement. While this processing is fairly simple,
there are several options worth examining in more detail.

e For the ‘-h’ option, the usage () function is automatically called.
e Range checking for ‘=i’ occurs. If ‘-i’ has a negative value, an error message is printed
to stderr and the error flag is raised.

e For ‘-o’, a character array is dynamically allocated; thus, the need for the free_args ()
function.

After the loop over getopt_long() is complete, the error flag is checked. If it is raised, or
if the help option has been set, the usage () function is called.

At the end of Cmdline (), the behavior of optind is modified slightly. While optind
is returned to the caller in the struct arg_t, we set it to 0 if there are no non-option
command line parameters. Otherwise, we pass it back as is, so that it can be used as a
pointer into argv.

2.3.3 Main Program

Next to specification of the Genparse file, the most important part of using Genparse is
interfacing it with user code. In this section, we show the main program code for mycopy3.c
and describe how the routines created by Genparse are used.

/* mycopy3.c */

#include <stdio.h>
#include <stdlib.h>
#include "mycopy3_clp.h"

3 The name of the parser function can be set by the user. See Chapter 3 [Genparse
Options|, page 23.

Chapter 2: Making Genparse Files 12

#define VERSION "3.0"

int main(int argc, char *argv[])
{

int ¢, i;

FILE *fp, *ofp;

struct arg_t *a,;

a = Cmdline(argc, argv);

if (a->v)
{
printf ("%s version %s\n", argv[0], VERSION);
exit (0);
}

if (a->o0)

ofp = fopen(a->o0, "w");
else

ofp = stdout;

if (la->optind)
fp = stdin;
else
fp = fopen(argv[a->optind]l,"r");

for (i = 0; i < a->i; i++)
{
while((c = fgetc(fp)) != EOF)
fputc(c, ofp);
rewind(£fp);
}

fclose(fp);
free_args(a);
return O;

The mycopy3.c module begins by including mycopy3_clp.h, which is necessary for the
definition of struct arg_t and the parser function prototypes. The Cmdline() function is
called immediately, and the result is returned to a local struct arg_t pointer. While the
parsing function does not always have to be called before all other processing, it must be
called before any command line parameters are used.

The program then checks a number of the parameters, as returned in the structure. In
particular, if the ‘-=v’ option is set, the version number is displayed and then the program
is terminated.

Chapter 2: Making Genparse Files 13

If the optind pointer is set to 0, indicating that there are no non-option parameters on
the command line, the input is redirected to stdin, If the output file is not specified with
the ‘-0’ option, output is redirected to stdout.

The program ends by deallocating parameter memory by calling free_args().

2.4 Include Files and Callbacks

So far, our examples have only considered the basic features of Genparse. In fact,
these features are probably more than enough for 90% of all command line parsing needs.
However, some programs require additional flexibility. In this section, we explore some of
the advanced features of Genparse.

Include files may be specified at the beginning of a Genparse file. They are listed in

C style, e.g., #include <file.h>. Quotes are not allowed in include directives. One of
the possible uses of include files are for when a macro needs to be used in a Genparse file.
Consider the following modification to mycopy3. gp.

/* mycopy3.gp */

#include <mycopy3.h>

#mandatory file

i / iterations int 1 [0...MAX] "Number of times to output <file>."

o / outfile string {""} "Output file."
This example assumes that the macro MAX is defined in mycopy3.h.

In order to demonstrate the utility of callback functions, let’s further modify mycopy3. gp.
In fact, let’s just call it mycopy4.gp.
/* mycopy4.gp */
#include <mycopy4.h>
#mandatory file
my_callback()
i / iterations int 1 [1..MAX] "Number of times to output <file>."
o / outfile string {""} outfile_cb() "Output file."
This file instructs Genparse to create a global callback function my_callback() and
the option callback function outfile_cb(). The my_callback() function is called by the
parser, while the user determines when to call outfile_cb().

For these callbacks, Genparse adds prototypes to the header file, a call to the parser file,
and callback skeletons in a callback file. Rather than display the whole header and parse
files, we’ll just show the lines that are added.

Callback functions are useful if extra processing needs to occur before one or more
parameters are used by the main program. For example, if one parameter is dependent on
the values of two others, a user-defined global callback function can contain the logic to
check for the proper conditions.

/* mycopy4_clp.h */

/* global and local callbacks */
int my_callback(struct arg_t *);
int param_o_callback(char *);

In the mycopy4_clp.h file, prototypes for the global and the option callback functions.
Note that the convention for naming option callback functions is "param_X_callback()"
where X is the short form of the option.

Chapter 2: Making Genparse Files 14

/* mycopy4_clp.c */
if (!'my_callback(my_args))
usage (argv[0]);
In the mycopy4_clp.c file, a call to the global callback is made. If a 0 is returned, an
error is assumed and the usage function is called. There may be more than one global
callback - all will be called in the parser function.

The main difference in Genparse behavior that including callbacks produces is the cre-
ation of a callback file. This file contains skeletons of all of the callback functions. It is
up to the user to fill them in. Note that callbacks should return 0 on error and non-zero
otherwise.

/* mycopy4_clp_cb.c */

#include <stdio.h>
#include "mycopy4_clp.h"

*%

** my_callback()
k%

** User defined global callback.
k%

int my_callback(struct arg_t *a)
{

return 1;

}

k%

** param_o_callback()
*k

** User defined parameter callback.
*ok

int param_o_callback(char * var)
{

return 1;
}
Note that the struct arg_t structure must be passed to the global callback, while the
option value is expected to be passed in character array format to option callbacks.

2.5 C++ Output

All of our example so far have shown Genparse creating C code. Genparse also supports
C++ output. This section examines the difference between C and C++ output and how to
interface a program with a command line parsing class created by Genparse.

Chapter 2: Making Genparse Files 15

As with C output, Genparse creates two or three C++ output files: a header file, a parser
class file, and a callback file. We’ll use mycopy4.gp as input to create these files. We invoke
Genparse as follows.

genparse -1 cpp -o mycopy4_clp mycopy4.gp
The three created files are named, mycopy4_clp.h, mycopy4_clp.cc, and mycopy4_clp_
cb.cc. We'll walk through each one in turn.

2.5.1 Header File

The code for mycopy4_clp.h appears below.
/* mycopy4_clp.h */

#ifndef CMDLINE_H
#define CMDLINE_H

#include <iostream>
#include <string>
#include <mycopy4.h>

*%
** class Cmdline
*%

** command line parser class
Kok

class Cmdline
{
private:
/* parameters */
int _i;
string _o;
bool _h;
bool _q;
bool _v;

/* other stuff to keep track of */
string _executable;
int _optind;

public:
/* constructor and destructor */
Cmdline(int, char *x) throw(string);
“Cmdline() {}

/* usage function */
void usage();

Chapter 2: Making Genparse Files 16

/* return next (non-option) parameter */
int next_param() { return _optind; }

/* callback functions */
bool my_callback();
bool param_o_callback();

int 1() { return _i; }
string o() { return _o; }
bool h() { return _h; }
bool q() { return _q; }
bool v() { return _v; }

};

#endif

The header file contains the definition of the command line parser class. The class
defines a logical structure that puts different requirements on the main program than when
the output code is in C. We summarize the differences between C and C++ output below.

e Each parameter value is stored an a private member variable, and must be accessed
through a call to a the member function named with the short form of the option.

e The name of the executable is stored in a private member variable, but is not available
to the via the interface (the main program has access to argv[0]).

e A copy of the optind variable is stored in a private member variable, and is accessible
through the next_param() member function.

e All callbacks are public member functions.
e The usage function is a public member function.

e There is no function analogous to free_args(). Since the class does not dynamically
allocate memory, the destructor will handle all deallocation.

e The constructor throws a string exception if command line parsing fails.

2.5.2 Parser File

The parser file defines the non-inlined member functions; i.e., the constructor and the
usage function. The code for mycopy4_clp.cc appears below.

/* mycopy4_clp.cc */

#include <getopt.h>
#include <stdlib.h>
#include "mycopy4_clp.h"
#include "mycopy4_clp_cb.cc"

k%

**x Cmdline::Cmdline()
*%

Chapter 2: Making Genparse Files 17

**x Constructor method.
k%

Cmdline::Cmdline(int argc, char *argv[]) throw (string)
{

extern char *optarg;

extern int optind;

int option_index = O0;

char c;

static struct option long_options[] =
{
{"iterations", 1, 0, ’i’},
{"outfile", 1, 0, ’0’},
{“help", 1’ o, ’h’},
{“quiet", 1’ O, ;q)}’
{"version", 1, 0, ’v’},
{0, 0, 0, O}
};

_executable += argv[0];

/* default values */

_i=1;

_h = false;
_q = false;
v = false;

while ((c = getopt_long(argc, argv, "i:o:hqv", long_options,
&option_index)) != EOF)
{
switch(c)
{
case ’i’:
_i = atoi(optarg);
if (i < 1)
{
string s;
s += "parameter range error: i must be >= 1";
throw(s);
}
if (i > MAX)
{
string s;
s += "parameter range error: i must be <= MAX";
throw(s);
+

break;

Chapter 2: Making Genparse Files 18

case ’0’:
_o = optarg;
if (!param_o_callback())
this->usage() ;
break;

case ’h’:
_h = true;
this—>usage();
break;

case ’'q’:
_q = true;
break;

case ’v’:
_Vv = true;
break;

default:
this->usage();

}
} /* while %/

_optind = optind;
if (!my_callback())
usage () ;

*x
** Cmdline::usage()
*x

** Usage function.
k%

void Cmdline::usage()
{
cout << "usage: " << _executable << " [-iohqv] <file>" << endl;
cout <« " [-1] ";
cout << "[--iterations] ";
cout << "Number of times to output <file>. ";
cout << "(default = 1)";
cout << endl;
cout << " [-0] ";
cout << "[--outfile] ";

Chapter 2: Making Genparse Files

cout
cout
cout
cout
cout
cout
cout
cout
cout
cout
cout
cout

exit (0);

¥

<<
<<
<<
<<
<<
<<
<<
<<
<<
<<
<<
<<

"Output file. ";
endl;

n [_h] u;

n[__help] n;

"Display help information.

"(default = 0)";
endl;

n [-v] ll;

"[--version] ";
"Output version. ";
"(default = 0)";
endl;

19

As can be seen from this example, the C++ parser is very similar to the C parser we
discussed in Section 2.3.2 [Parser Files|, page 8. The main differences are that all strings
are stored in C++ string format?.

It is important to note that the callback file is actually included into the parser file. This
is because callbacks are implemented as member functions of the parser class, and most C++
compilers will not allow splitting a class’s member functions across more than one file. The
bottom line of all this is that you don’t have to link in the callback file, just the parser file.

2.5.3 Callback File

The callback file defines skeleton callback routines for the user to fill in. Their syntax

is virtually identical to the C output case, except that their return values are bool rather

than int. The code for mycopy4_clp_cb.cc appears below.

/* mycopy4_clp_cb.cc */

#include "mycopy4_clp.h"

*%

** Cmdline::my_callback()

k%

** Global callback.

k%

bool Cmdline::my_callback()

{

return true;

}

4 Older C++ compilers may not support built-in strings. If this is a problem, upgrade your
compiler! Tt’s too old anyway.

Chapter 2: Making Genparse Files 20

k%
*x Cmdline::param_o()
k%

x Parameter callback.
*%

bool Cmdline::param_o_callback()
{
return true;

}

2.5.4 Main Program

Due to the syntactic differences between C and C++, the C++ main program must interact
with the command line parser class in a different fashion than in the C case. The code for
mycopy4.cc appears below.

/* mycopy4.cc */

#include <iostream>
#include <fstream>
#include "mycopy4_clp.h"

#define VERSION "3.0"

int main(int argc, char *argv[])
{
int 1i;
char c;
ifstream input_file;
ofstream output_file;
bool ofile = false, ifile = false;

Cmdline cl(argc, argv);

if (cl1.v())
{
cout << argv[0] << " version " << VERSION << endl;
exit (0);
X

if (lcl.o(Q).empty())
{
output_file.open(cl.o().c_str());
ofile = true;

}

if (cl.next_param())

{

Chapter 2: Making Genparse Files 21

input_file.open(argv[cl.next_param()]);
ifile = true;

for (1 = 0; 1 < cl.i(); i++)

if (ifile) c = input_file.get();
else cin >> c;

while(c !'= EOF)

if (ofile) output_file.put(c);
else cout << c;

if (ifile) c = input_file.get();
else cin >> c;

if (ifile)

input_file.clear();
input_file.seekg(0);

}

input_file.close();
output_file.close();

return O;
Although mycopy4 provide almost identical output and functionality as that of mycopy3,
it must access all command line parameters and related information through the command
line parser class interface.

2.6 Idiosyncrasies

Although Genparse has been designed to be as flexible as possible, it will always be
more limited than manual command line parsing or using getopt(). In this section, we
document some of the strange and unusual behavior of Genparse.

e In order to specify an option that only has a long form, you must specify the token

"NONE" in place of the short option. For example
NONE / longonly flag
specified a flag option that only has a long form (‘--longonly’).

e The ‘-h’ and ‘-v’ options will always exist. Their default behavior can be overridden,
but Genparse cannot create parsers without them. (See Chapter 3 [Genparse Options],
page 23.)

e In a parser, the ‘-h’ option will automatically call the usage function if and only if the
long form of the option is ‘--help’. Otherwise, Genparse assumes that the user has
overridden ‘-h’ and treats it like any other option.

Chapter 2: Making Genparse Files 22

e For C output you must link in both the parser and the callback files. For C++ output,
you only need to link in the parser file. See Section 2.5.2 [Parser File|, page 16.

Chapter 3: Genparse Options 23

3 Genparse Options

In this section we present the command line options that Genparse accepts, along with
their default values. Genparse’s command line parsing functions were created by Genparse
(talk about bootstrapping), so you can expect Genparse to behave like any other program
with Genparse-enabled command line parsing.

o ‘-’ [‘-—cppext’ C++ file extension. There are a number of valid C++ file extensions,
such as "C", "cc", "cpp",and "cxx". This option allows the user to specify which one
should be used for the C++ files created by Genparse. The default value is "cc". If C++
is not the output language, this option is ignored.

e ‘-d’: Debug mode. Setting this flag turns on debugging in the form of logging to a
file and yacc debug output to stderr. The name of the debug/log file can be specified
with the ‘-f” option (see below). The default value is off. Only useful for debugging
Genparse itself.

o ‘—f’ /‘—-logfile’. Name of log file. Only used if debugging (‘-d’ option) is turned on.
All debug output will be written to this file. Currently this consists of the processing
of the Genparse file and dumping the state of the command line parameter list class.
The default value is "genparse.log". Only useful for debugging Genparse itself.

e ‘-h’ / ‘--help” Help instructions. This option displays the usage of Genparse with a
list of all command line options, then terminates the program. The default is off.

e ‘-1’ / ‘~-language’ Output language. The programming language in which Genparse
writes the output files. Currently only C and C++ are supported. The default is C. To
indicate C++, the following strings may be used: "c++", "cpp", "cc", and "cxx".

e ‘-0’ [/ ‘-—outfile’> Output file name. Specifies the main part of the output file name.
The extension will be determined by the output language and possibly by other options.
For example, when the output language is C, giving this option an argument of "file"
will result in output file names of "file.h", "file.c" and "file_cb.c" for the header, parser,
and callback files, respectively. Default value is "parse_cl".

e ‘-p’ / ‘-—parsefunc’: Name of the parsing function/class. This option allows the user
to specify the name of the function (for C) or class (for C++) that does the actual
command line parsing. Default value is "Cmdline".

‘v’ [/ ‘--version’: Version. If this option is set, the version number is displayed, then

the program is terminated. The default value is off.

The ‘-h’ and ‘-v’ options can be overridden by defining them to be something else in
the Genparse file. However, they cannot be turned off completely. In other words, you
can define your own ‘-h’ and ‘-v’ options or let Genparse created them with the default
behavior.

Chapter 4: Genparse File Grammar 24

4 Genparse File Grammar

A Genparse file consists of a number of include and mandatory declarations and global
callbacks followed by definitions of parameters. Each option definition must include a short
form. The long form, separated from the short form by a slash, is optional. The type of
the parameter must follow directly after the short and long forms. The remaining fields,
default value, range, callback and description, are optional, and may appear in any order.
Only one of each field may be defined per option.

In order to better understand the subtleties of the Genparse file format and its parsing,
in the section we provide the formal grammar of Genparse files. This is a slightly edited
version of the yacc grammar. Items in capitals are tokens that are defined in the lex file.

all: globals entries
| entries

globals: globals global
| global

global: include
| mandatory
| global_callback

include: #include<FILENAME>
mandatory: #mandatory<FILENAME>
global_callback: callback

entries: entries entry
| entry

entry: param
| param type
| param type options

options: options option
| option

option: default
| range
| callback
| description

param: short_param
| NONE / long_param

| short_param / long_param

short_param: CHAR

Chapter 4: Genparse File Grammar

long_param: VAR

type: INT

| FLOAT
| STRING
| CHAR

| FLAG

default: ALNUM
| {QUOTED_STR}

range: [contiguous_range]

contiguous_range: ALNUM range_spec more_range
| range_spec more_range

more_range: ALNUM
| C_VAR
|

range_spec:

|
callback: VARQ)

description: QUOTED_STR

25

Chapter 5: The Future 26

5 The Future

While there’s practically no limit to the number of enhancements that could be made

to Genparse, I'll limit this section to a number of features that actually have a chance of
being implemented.

Back up output files before overwriting them. Minimally, old callback files should
be saved, because those are meant to be modified by the user. This isn’t hard, but
I'd like to do it "right" by encapsulating the functionality into a general-purpose file
manipulation class.

Enumerated types for strings. Currently command line strings are not checked for any
sort of validity. This would allow the user to specify a list of valid values for a particular
string. The syntax would probably be like an enumerated type in C.

A way to distinguish between optional and mandatory non-option command line pa-
rameters.

Support for more output languages. Perhaps tcl and perl first, and other scripting
languages afterwards. This should be pretty easy to do since it would only require
adding the appropriate member functions to the command line parameter list class
and a little bit of supporting code here and there.

Place getopt.h, getopt.c, and getopt_internal.c in a neutral shared directory so
that others can copy them locally for their own use.

Chapter 6: Some History 27

6 Some History

Long, long ago in a lab far, far away, I became frustrated with the time required to
write command line parsing routines, even with getopt (), for all of the new programs that
I developed. 1 felt that it was tedious work that offered too many opportunities to cut
corners and produce error-prone code. In late 1997, the seeds of Genparse fell together
in my head, and I released version 0.1, written in C, on New Year’s Day, 1998. The only
output language supported was C, and it did not allow long options. Parameter types were
limited to flags, integers, floats, and strings, and range checking was supported.

It soon became clear that although Genparse was fairly useful (I was already using it
to create parsers for my own projects), it was severely limited and could use a number
of additional features. With the help of a handful of people who provided feedback and
constructive criticism, version 0.2 was soon released. New features included a more flex-
ible Genparse file format (essentially, the current format) which was parsed by lex and
yacc rather than by my C code. Parameter descriptions and callback functions were now
supported.

A few bug fixes later, version 0.2.2 was released. It was to remain current for over a
year. In June 1999, I revisited Genparse to add the #include and #mandatory directives,
as well as to clean up the code a bit and perform some minor bug stomping. The resulting
version 0.3 was distributed with Debian/GNU Linux.

During my revision that produced 0.3, I became aware of the acute coding slop that had
evolved. To call the output functions "spaghetti logic" would have been an understatement.
Naturally, I needed to modularize Genparse, and the best way of doing so seemed to be a
re-write in C++. In December 1999, I undertook this task. The code became separated into
three logical sections:

e The parser, a yacc grammar with supporting code.
e An internal representation, encapsulated in a C++ class.

e Qutput functions for each supported language, built into the C++ class.

This design greatly improved the extensibility of Genparse. In order to support a new
output language, one only needs to add appropriate member functions to the C++ class.
This implementation became version 0.4.

An important part of 0.4 was support for C++ as an output language. Rather than
returning a struct containing the command line parameter values, a C++ command line
parser would be encapsulated by a C++ class. The user would call the member functions of
this class to access parameter values, making for a cleaner interface than C can support.

Version 0.4 also included a more comprehensive set of test suites along with the docu-
mentation that you currently are reading.

In Fall 2000, I revisited Genparse. Version 0.4 did not support options with no short
form, and thus was limited to 52 options at most. Version 0.5 lifted this restriction, included
<stdlib.h> rather than the depreciated <malloc.h> in output files, and fixed up user-
defined include files so that they worked with quotes as well as "<>". Also, I finally figured
out how to get Genparse to reliably compile on systems both with and without the getopt_
long() function.

Chapter 6: Some History 28

Version 0.5.1 fixed a few problems with the lexical analyzer that resulted in default
values for floats not being used properly. This version also eliminated the mandatory use
of the ‘-q’ option.

Chapter 7: Index

7 Index

C

Cheaderfile 6
C main programooiia... 11
Coutput........oooiiii 6
Coparserfile............ .. i, 8
C++ callback file............................. 19
C++ filename extensions 23
C++header file 15
CH++ main programc.ooeeuuneeeennn.. 20
CHroutpub. . ..ooovieee 14
CH+oparserfile........ 16
Callback functions 13
Command line, rearranging 5
Contact info............... 1

G

Genparse file 1
Genparse file grammar 24
Genparse file, simple example.................. 5
Genparse files, making 2
Genparse, invoking, example................... 6
GetOpt() oo 3

29

H

Historyo 27

I

Idiosyncrasies ... 21
Include files i 13

L

Limitations. 1
Linking 21

Optind.......oooo i 5
Option, help....... ... 7
Option, quietcooviiei i, 7
Option, versionooueiiiiiiiinn.... 7
Options . ..o oot 23
Overriding default options.................... 23

U

Usage function, 1

