00001 // Multimap implementation -*- C++ -*- 00002 00003 // Copyright (C) 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008 00004 // Free Software Foundation, Inc. 00005 // 00006 // This file is part of the GNU ISO C++ Library. This library is free 00007 // software; you can redistribute it and/or modify it under the 00008 // terms of the GNU General Public License as published by the 00009 // Free Software Foundation; either version 2, or (at your option) 00010 // any later version. 00011 00012 // This library is distributed in the hope that it will be useful, 00013 // but WITHOUT ANY WARRANTY; without even the implied warranty of 00014 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 00015 // GNU General Public License for more details. 00016 00017 // You should have received a copy of the GNU General Public License along 00018 // with this library; see the file COPYING. If not, write to the Free 00019 // Software Foundation, 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, 00020 // USA. 00021 00022 // As a special exception, you may use this file as part of a free software 00023 // library without restriction. Specifically, if other files instantiate 00024 // templates or use macros or inline functions from this file, or you compile 00025 // this file and link it with other files to produce an executable, this 00026 // file does not by itself cause the resulting executable to be covered by 00027 // the GNU General Public License. This exception does not however 00028 // invalidate any other reasons why the executable file might be covered by 00029 // the GNU General Public License. 00030 00031 /* 00032 * 00033 * Copyright (c) 1994 00034 * Hewlett-Packard Company 00035 * 00036 * Permission to use, copy, modify, distribute and sell this software 00037 * and its documentation for any purpose is hereby granted without fee, 00038 * provided that the above copyright notice appear in all copies and 00039 * that both that copyright notice and this permission notice appear 00040 * in supporting documentation. Hewlett-Packard Company makes no 00041 * representations about the suitability of this software for any 00042 * purpose. It is provided "as is" without express or implied warranty. 00043 * 00044 * 00045 * Copyright (c) 1996,1997 00046 * Silicon Graphics Computer Systems, Inc. 00047 * 00048 * Permission to use, copy, modify, distribute and sell this software 00049 * and its documentation for any purpose is hereby granted without fee, 00050 * provided that the above copyright notice appear in all copies and 00051 * that both that copyright notice and this permission notice appear 00052 * in supporting documentation. Silicon Graphics makes no 00053 * representations about the suitability of this software for any 00054 * purpose. It is provided "as is" without express or implied warranty. 00055 */ 00056 00057 /** @file stl_multimap.h 00058 * This is an internal header file, included by other library headers. 00059 * You should not attempt to use it directly. 00060 */ 00061 00062 #ifndef _STL_MULTIMAP_H 00063 #define _STL_MULTIMAP_H 1 00064 00065 #include <bits/concept_check.h> 00066 00067 _GLIBCXX_BEGIN_NESTED_NAMESPACE(std, _GLIBCXX_STD_D) 00068 00069 /** 00070 * @brief A standard container made up of (key,value) pairs, which can be 00071 * retrieved based on a key, in logarithmic time. 00072 * 00073 * @ingroup Containers 00074 * @ingroup Assoc_containers 00075 * 00076 * Meets the requirements of a <a href="tables.html#65">container</a>, a 00077 * <a href="tables.html#66">reversible container</a>, and an 00078 * <a href="tables.html#69">associative container</a> (using equivalent 00079 * keys). For a @c multimap<Key,T> the key_type is Key, the mapped_type 00080 * is T, and the value_type is std::pair<const Key,T>. 00081 * 00082 * Multimaps support bidirectional iterators. 00083 * 00084 * The private tree data is declared exactly the same way for map and 00085 * multimap; the distinction is made entirely in how the tree functions are 00086 * called (*_unique versus *_equal, same as the standard). 00087 */ 00088 template <typename _Key, typename _Tp, 00089 typename _Compare = std::less<_Key>, 00090 typename _Alloc = std::allocator<std::pair<const _Key, _Tp> > > 00091 class multimap 00092 { 00093 public: 00094 typedef _Key key_type; 00095 typedef _Tp mapped_type; 00096 typedef std::pair<const _Key, _Tp> value_type; 00097 typedef _Compare key_compare; 00098 typedef _Alloc allocator_type; 00099 00100 private: 00101 // concept requirements 00102 typedef typename _Alloc::value_type _Alloc_value_type; 00103 __glibcxx_class_requires(_Tp, _SGIAssignableConcept) 00104 __glibcxx_class_requires4(_Compare, bool, _Key, _Key, 00105 _BinaryFunctionConcept) 00106 __glibcxx_class_requires2(value_type, _Alloc_value_type, _SameTypeConcept) 00107 00108 public: 00109 class value_compare 00110 : public std::binary_function<value_type, value_type, bool> 00111 { 00112 friend class multimap<_Key, _Tp, _Compare, _Alloc>; 00113 protected: 00114 _Compare comp; 00115 00116 value_compare(_Compare __c) 00117 : comp(__c) { } 00118 00119 public: 00120 bool operator()(const value_type& __x, const value_type& __y) const 00121 { return comp(__x.first, __y.first); } 00122 }; 00123 00124 private: 00125 /// This turns a red-black tree into a [multi]map. 00126 typedef typename _Alloc::template rebind<value_type>::other 00127 _Pair_alloc_type; 00128 00129 typedef _Rb_tree<key_type, value_type, _Select1st<value_type>, 00130 key_compare, _Pair_alloc_type> _Rep_type; 00131 /// The actual tree structure. 00132 _Rep_type _M_t; 00133 00134 public: 00135 // many of these are specified differently in ISO, but the following are 00136 // "functionally equivalent" 00137 typedef typename _Pair_alloc_type::pointer pointer; 00138 typedef typename _Pair_alloc_type::const_pointer const_pointer; 00139 typedef typename _Pair_alloc_type::reference reference; 00140 typedef typename _Pair_alloc_type::const_reference const_reference; 00141 typedef typename _Rep_type::iterator iterator; 00142 typedef typename _Rep_type::const_iterator const_iterator; 00143 typedef typename _Rep_type::size_type size_type; 00144 typedef typename _Rep_type::difference_type difference_type; 00145 typedef typename _Rep_type::reverse_iterator reverse_iterator; 00146 typedef typename _Rep_type::const_reverse_iterator const_reverse_iterator; 00147 00148 // [23.3.2] construct/copy/destroy 00149 // (get_allocator() is also listed in this section) 00150 /** 00151 * @brief Default constructor creates no elements. 00152 */ 00153 multimap() 00154 : _M_t() { } 00155 00156 /** 00157 * @brief Creates a %multimap with no elements. 00158 * @param comp A comparison object. 00159 * @param a An allocator object. 00160 */ 00161 explicit 00162 multimap(const _Compare& __comp, 00163 const allocator_type& __a = allocator_type()) 00164 : _M_t(__comp, __a) { } 00165 00166 /** 00167 * @brief %Multimap copy constructor. 00168 * @param x A %multimap of identical element and allocator types. 00169 * 00170 * The newly-created %multimap uses a copy of the allocation object 00171 * used by @a x. 00172 */ 00173 multimap(const multimap& __x) 00174 : _M_t(__x._M_t) { } 00175 00176 #ifdef __GXX_EXPERIMENTAL_CXX0X__ 00177 /** 00178 * @brief %Multimap move constructor. 00179 * @param x A %multimap of identical element and allocator types. 00180 * 00181 * The newly-created %multimap contains the exact contents of @a x. 00182 * The contents of @a x are a valid, but unspecified %multimap. 00183 */ 00184 multimap(multimap&& __x) 00185 : _M_t(std::forward<_Rep_type>(__x._M_t)) { } 00186 #endif 00187 00188 /** 00189 * @brief Builds a %multimap from a range. 00190 * @param first An input iterator. 00191 * @param last An input iterator. 00192 * 00193 * Create a %multimap consisting of copies of the elements from 00194 * [first,last). This is linear in N if the range is already sorted, 00195 * and NlogN otherwise (where N is distance(first,last)). 00196 */ 00197 template<typename _InputIterator> 00198 multimap(_InputIterator __first, _InputIterator __last) 00199 : _M_t() 00200 { _M_t._M_insert_equal(__first, __last); } 00201 00202 /** 00203 * @brief Builds a %multimap from a range. 00204 * @param first An input iterator. 00205 * @param last An input iterator. 00206 * @param comp A comparison functor. 00207 * @param a An allocator object. 00208 * 00209 * Create a %multimap consisting of copies of the elements from 00210 * [first,last). This is linear in N if the range is already sorted, 00211 * and NlogN otherwise (where N is distance(first,last)). 00212 */ 00213 template<typename _InputIterator> 00214 multimap(_InputIterator __first, _InputIterator __last, 00215 const _Compare& __comp, 00216 const allocator_type& __a = allocator_type()) 00217 : _M_t(__comp, __a) 00218 { _M_t._M_insert_equal(__first, __last); } 00219 00220 // FIXME There is no dtor declared, but we should have something generated 00221 // by Doxygen. I don't know what tags to add to this paragraph to make 00222 // that happen: 00223 /** 00224 * The dtor only erases the elements, and note that if the elements 00225 * themselves are pointers, the pointed-to memory is not touched in any 00226 * way. Managing the pointer is the user's responsibility. 00227 */ 00228 00229 /** 00230 * @brief %Multimap assignment operator. 00231 * @param x A %multimap of identical element and allocator types. 00232 * 00233 * All the elements of @a x are copied, but unlike the copy constructor, 00234 * the allocator object is not copied. 00235 */ 00236 multimap& 00237 operator=(const multimap& __x) 00238 { 00239 _M_t = __x._M_t; 00240 return *this; 00241 } 00242 00243 #ifdef __GXX_EXPERIMENTAL_CXX0X__ 00244 /** 00245 * @brief %Multimap move assignment operator. 00246 * @param x A %multimap of identical element and allocator types. 00247 * 00248 * The contents of @a x are moved into this multimap (without copying). 00249 * @a x is a valid, but unspecified multimap. 00250 */ 00251 multimap& 00252 operator=(multimap&& __x) 00253 { 00254 // NB: DR 675. 00255 this->clear(); 00256 this->swap(__x); 00257 return *this; 00258 } 00259 #endif 00260 00261 /// Get a copy of the memory allocation object. 00262 allocator_type 00263 get_allocator() const 00264 { return _M_t.get_allocator(); } 00265 00266 // iterators 00267 /** 00268 * Returns a read/write iterator that points to the first pair in the 00269 * %multimap. Iteration is done in ascending order according to the 00270 * keys. 00271 */ 00272 iterator 00273 begin() 00274 { return _M_t.begin(); } 00275 00276 /** 00277 * Returns a read-only (constant) iterator that points to the first pair 00278 * in the %multimap. Iteration is done in ascending order according to 00279 * the keys. 00280 */ 00281 const_iterator 00282 begin() const 00283 { return _M_t.begin(); } 00284 00285 /** 00286 * Returns a read/write iterator that points one past the last pair in 00287 * the %multimap. Iteration is done in ascending order according to the 00288 * keys. 00289 */ 00290 iterator 00291 end() 00292 { return _M_t.end(); } 00293 00294 /** 00295 * Returns a read-only (constant) iterator that points one past the last 00296 * pair in the %multimap. Iteration is done in ascending order according 00297 * to the keys. 00298 */ 00299 const_iterator 00300 end() const 00301 { return _M_t.end(); } 00302 00303 /** 00304 * Returns a read/write reverse iterator that points to the last pair in 00305 * the %multimap. Iteration is done in descending order according to the 00306 * keys. 00307 */ 00308 reverse_iterator 00309 rbegin() 00310 { return _M_t.rbegin(); } 00311 00312 /** 00313 * Returns a read-only (constant) reverse iterator that points to the 00314 * last pair in the %multimap. Iteration is done in descending order 00315 * according to the keys. 00316 */ 00317 const_reverse_iterator 00318 rbegin() const 00319 { return _M_t.rbegin(); } 00320 00321 /** 00322 * Returns a read/write reverse iterator that points to one before the 00323 * first pair in the %multimap. Iteration is done in descending order 00324 * according to the keys. 00325 */ 00326 reverse_iterator 00327 rend() 00328 { return _M_t.rend(); } 00329 00330 /** 00331 * Returns a read-only (constant) reverse iterator that points to one 00332 * before the first pair in the %multimap. Iteration is done in 00333 * descending order according to the keys. 00334 */ 00335 const_reverse_iterator 00336 rend() const 00337 { return _M_t.rend(); } 00338 00339 #ifdef __GXX_EXPERIMENTAL_CXX0X__ 00340 /** 00341 * Returns a read-only (constant) iterator that points to the first pair 00342 * in the %multimap. Iteration is done in ascending order according to 00343 * the keys. 00344 */ 00345 const_iterator 00346 cbegin() const 00347 { return _M_t.begin(); } 00348 00349 /** 00350 * Returns a read-only (constant) iterator that points one past the last 00351 * pair in the %multimap. Iteration is done in ascending order according 00352 * to the keys. 00353 */ 00354 const_iterator 00355 cend() const 00356 { return _M_t.end(); } 00357 00358 /** 00359 * Returns a read-only (constant) reverse iterator that points to the 00360 * last pair in the %multimap. Iteration is done in descending order 00361 * according to the keys. 00362 */ 00363 const_reverse_iterator 00364 crbegin() const 00365 { return _M_t.rbegin(); } 00366 00367 /** 00368 * Returns a read-only (constant) reverse iterator that points to one 00369 * before the first pair in the %multimap. Iteration is done in 00370 * descending order according to the keys. 00371 */ 00372 const_reverse_iterator 00373 crend() const 00374 { return _M_t.rend(); } 00375 #endif 00376 00377 // capacity 00378 /** Returns true if the %multimap is empty. */ 00379 bool 00380 empty() const 00381 { return _M_t.empty(); } 00382 00383 /** Returns the size of the %multimap. */ 00384 size_type 00385 size() const 00386 { return _M_t.size(); } 00387 00388 /** Returns the maximum size of the %multimap. */ 00389 size_type 00390 max_size() const 00391 { return _M_t.max_size(); } 00392 00393 // modifiers 00394 /** 00395 * @brief Inserts a std::pair into the %multimap. 00396 * @param x Pair to be inserted (see std::make_pair for easy creation 00397 * of pairs). 00398 * @return An iterator that points to the inserted (key,value) pair. 00399 * 00400 * This function inserts a (key, value) pair into the %multimap. 00401 * Contrary to a std::map the %multimap does not rely on unique keys and 00402 * thus multiple pairs with the same key can be inserted. 00403 * 00404 * Insertion requires logarithmic time. 00405 */ 00406 iterator 00407 insert(const value_type& __x) 00408 { return _M_t._M_insert_equal(__x); } 00409 00410 /** 00411 * @brief Inserts a std::pair into the %multimap. 00412 * @param position An iterator that serves as a hint as to where the 00413 * pair should be inserted. 00414 * @param x Pair to be inserted (see std::make_pair for easy creation 00415 * of pairs). 00416 * @return An iterator that points to the inserted (key,value) pair. 00417 * 00418 * This function inserts a (key, value) pair into the %multimap. 00419 * Contrary to a std::map the %multimap does not rely on unique keys and 00420 * thus multiple pairs with the same key can be inserted. 00421 * Note that the first parameter is only a hint and can potentially 00422 * improve the performance of the insertion process. A bad hint would 00423 * cause no gains in efficiency. 00424 * 00425 * See http://gcc.gnu.org/onlinedocs/libstdc++/23_containers/howto.html#4 00426 * for more on "hinting". 00427 * 00428 * Insertion requires logarithmic time (if the hint is not taken). 00429 */ 00430 iterator 00431 insert(iterator __position, const value_type& __x) 00432 { return _M_t._M_insert_equal_(__position, __x); } 00433 00434 /** 00435 * @brief A template function that attempts to insert a range of elements. 00436 * @param first Iterator pointing to the start of the range to be 00437 * inserted. 00438 * @param last Iterator pointing to the end of the range. 00439 * 00440 * Complexity similar to that of the range constructor. 00441 */ 00442 template<typename _InputIterator> 00443 void 00444 insert(_InputIterator __first, _InputIterator __last) 00445 { _M_t._M_insert_equal(__first, __last); } 00446 00447 /** 00448 * @brief Erases an element from a %multimap. 00449 * @param position An iterator pointing to the element to be erased. 00450 * 00451 * This function erases an element, pointed to by the given iterator, 00452 * from a %multimap. Note that this function only erases the element, 00453 * and that if the element is itself a pointer, the pointed-to memory is 00454 * not touched in any way. Managing the pointer is the user's 00455 * responsibility. 00456 */ 00457 void 00458 erase(iterator __position) 00459 { _M_t.erase(__position); } 00460 00461 /** 00462 * @brief Erases elements according to the provided key. 00463 * @param x Key of element to be erased. 00464 * @return The number of elements erased. 00465 * 00466 * This function erases all elements located by the given key from a 00467 * %multimap. 00468 * Note that this function only erases the element, and that if 00469 * the element is itself a pointer, the pointed-to memory is not touched 00470 * in any way. Managing the pointer is the user's responsibility. 00471 */ 00472 size_type 00473 erase(const key_type& __x) 00474 { return _M_t.erase(__x); } 00475 00476 /** 00477 * @brief Erases a [first,last) range of elements from a %multimap. 00478 * @param first Iterator pointing to the start of the range to be 00479 * erased. 00480 * @param last Iterator pointing to the end of the range to be erased. 00481 * 00482 * This function erases a sequence of elements from a %multimap. 00483 * Note that this function only erases the elements, and that if 00484 * the elements themselves are pointers, the pointed-to memory is not 00485 * touched in any way. Managing the pointer is the user's responsibility. 00486 */ 00487 void 00488 erase(iterator __first, iterator __last) 00489 { _M_t.erase(__first, __last); } 00490 00491 /** 00492 * @brief Swaps data with another %multimap. 00493 * @param x A %multimap of the same element and allocator types. 00494 * 00495 * This exchanges the elements between two multimaps in constant time. 00496 * (It is only swapping a pointer, an integer, and an instance of 00497 * the @c Compare type (which itself is often stateless and empty), so it 00498 * should be quite fast.) 00499 * Note that the global std::swap() function is specialized such that 00500 * std::swap(m1,m2) will feed to this function. 00501 */ 00502 void 00503 #ifdef __GXX_EXPERIMENTAL_CXX0X__ 00504 swap(multimap&& __x) 00505 #else 00506 swap(multimap& __x) 00507 #endif 00508 { _M_t.swap(__x._M_t); } 00509 00510 /** 00511 * Erases all elements in a %multimap. Note that this function only 00512 * erases the elements, and that if the elements themselves are pointers, 00513 * the pointed-to memory is not touched in any way. Managing the pointer 00514 * is the user's responsibility. 00515 */ 00516 void 00517 clear() 00518 { _M_t.clear(); } 00519 00520 // observers 00521 /** 00522 * Returns the key comparison object out of which the %multimap 00523 * was constructed. 00524 */ 00525 key_compare 00526 key_comp() const 00527 { return _M_t.key_comp(); } 00528 00529 /** 00530 * Returns a value comparison object, built from the key comparison 00531 * object out of which the %multimap was constructed. 00532 */ 00533 value_compare 00534 value_comp() const 00535 { return value_compare(_M_t.key_comp()); } 00536 00537 // multimap operations 00538 /** 00539 * @brief Tries to locate an element in a %multimap. 00540 * @param x Key of (key, value) pair to be located. 00541 * @return Iterator pointing to sought-after element, 00542 * or end() if not found. 00543 * 00544 * This function takes a key and tries to locate the element with which 00545 * the key matches. If successful the function returns an iterator 00546 * pointing to the sought after %pair. If unsuccessful it returns the 00547 * past-the-end ( @c end() ) iterator. 00548 */ 00549 iterator 00550 find(const key_type& __x) 00551 { return _M_t.find(__x); } 00552 00553 /** 00554 * @brief Tries to locate an element in a %multimap. 00555 * @param x Key of (key, value) pair to be located. 00556 * @return Read-only (constant) iterator pointing to sought-after 00557 * element, or end() if not found. 00558 * 00559 * This function takes a key and tries to locate the element with which 00560 * the key matches. If successful the function returns a constant 00561 * iterator pointing to the sought after %pair. If unsuccessful it 00562 * returns the past-the-end ( @c end() ) iterator. 00563 */ 00564 const_iterator 00565 find(const key_type& __x) const 00566 { return _M_t.find(__x); } 00567 00568 /** 00569 * @brief Finds the number of elements with given key. 00570 * @param x Key of (key, value) pairs to be located. 00571 * @return Number of elements with specified key. 00572 */ 00573 size_type 00574 count(const key_type& __x) const 00575 { return _M_t.count(__x); } 00576 00577 /** 00578 * @brief Finds the beginning of a subsequence matching given key. 00579 * @param x Key of (key, value) pair to be located. 00580 * @return Iterator pointing to first element equal to or greater 00581 * than key, or end(). 00582 * 00583 * This function returns the first element of a subsequence of elements 00584 * that matches the given key. If unsuccessful it returns an iterator 00585 * pointing to the first element that has a greater value than given key 00586 * or end() if no such element exists. 00587 */ 00588 iterator 00589 lower_bound(const key_type& __x) 00590 { return _M_t.lower_bound(__x); } 00591 00592 /** 00593 * @brief Finds the beginning of a subsequence matching given key. 00594 * @param x Key of (key, value) pair to be located. 00595 * @return Read-only (constant) iterator pointing to first element 00596 * equal to or greater than key, or end(). 00597 * 00598 * This function returns the first element of a subsequence of elements 00599 * that matches the given key. If unsuccessful the iterator will point 00600 * to the next greatest element or, if no such greater element exists, to 00601 * end(). 00602 */ 00603 const_iterator 00604 lower_bound(const key_type& __x) const 00605 { return _M_t.lower_bound(__x); } 00606 00607 /** 00608 * @brief Finds the end of a subsequence matching given key. 00609 * @param x Key of (key, value) pair to be located. 00610 * @return Iterator pointing to the first element 00611 * greater than key, or end(). 00612 */ 00613 iterator 00614 upper_bound(const key_type& __x) 00615 { return _M_t.upper_bound(__x); } 00616 00617 /** 00618 * @brief Finds the end of a subsequence matching given key. 00619 * @param x Key of (key, value) pair to be located. 00620 * @return Read-only (constant) iterator pointing to first iterator 00621 * greater than key, or end(). 00622 */ 00623 const_iterator 00624 upper_bound(const key_type& __x) const 00625 { return _M_t.upper_bound(__x); } 00626 00627 /** 00628 * @brief Finds a subsequence matching given key. 00629 * @param x Key of (key, value) pairs to be located. 00630 * @return Pair of iterators that possibly points to the subsequence 00631 * matching given key. 00632 * 00633 * This function is equivalent to 00634 * @code 00635 * std::make_pair(c.lower_bound(val), 00636 * c.upper_bound(val)) 00637 * @endcode 00638 * (but is faster than making the calls separately). 00639 */ 00640 std::pair<iterator, iterator> 00641 equal_range(const key_type& __x) 00642 { return _M_t.equal_range(__x); } 00643 00644 /** 00645 * @brief Finds a subsequence matching given key. 00646 * @param x Key of (key, value) pairs to be located. 00647 * @return Pair of read-only (constant) iterators that possibly points 00648 * to the subsequence matching given key. 00649 * 00650 * This function is equivalent to 00651 * @code 00652 * std::make_pair(c.lower_bound(val), 00653 * c.upper_bound(val)) 00654 * @endcode 00655 * (but is faster than making the calls separately). 00656 */ 00657 std::pair<const_iterator, const_iterator> 00658 equal_range(const key_type& __x) const 00659 { return _M_t.equal_range(__x); } 00660 00661 template<typename _K1, typename _T1, typename _C1, typename _A1> 00662 friend bool 00663 operator==(const multimap<_K1, _T1, _C1, _A1>&, 00664 const multimap<_K1, _T1, _C1, _A1>&); 00665 00666 template<typename _K1, typename _T1, typename _C1, typename _A1> 00667 friend bool 00668 operator<(const multimap<_K1, _T1, _C1, _A1>&, 00669 const multimap<_K1, _T1, _C1, _A1>&); 00670 }; 00671 00672 /** 00673 * @brief Multimap equality comparison. 00674 * @param x A %multimap. 00675 * @param y A %multimap of the same type as @a x. 00676 * @return True iff the size and elements of the maps are equal. 00677 * 00678 * This is an equivalence relation. It is linear in the size of the 00679 * multimaps. Multimaps are considered equivalent if their sizes are equal, 00680 * and if corresponding elements compare equal. 00681 */ 00682 template<typename _Key, typename _Tp, typename _Compare, typename _Alloc> 00683 inline bool 00684 operator==(const multimap<_Key, _Tp, _Compare, _Alloc>& __x, 00685 const multimap<_Key, _Tp, _Compare, _Alloc>& __y) 00686 { return __x._M_t == __y._M_t; } 00687 00688 /** 00689 * @brief Multimap ordering relation. 00690 * @param x A %multimap. 00691 * @param y A %multimap of the same type as @a x. 00692 * @return True iff @a x is lexicographically less than @a y. 00693 * 00694 * This is a total ordering relation. It is linear in the size of the 00695 * multimaps. The elements must be comparable with @c <. 00696 * 00697 * See std::lexicographical_compare() for how the determination is made. 00698 */ 00699 template<typename _Key, typename _Tp, typename _Compare, typename _Alloc> 00700 inline bool 00701 operator<(const multimap<_Key, _Tp, _Compare, _Alloc>& __x, 00702 const multimap<_Key, _Tp, _Compare, _Alloc>& __y) 00703 { return __x._M_t < __y._M_t; } 00704 00705 /// Based on operator== 00706 template<typename _Key, typename _Tp, typename _Compare, typename _Alloc> 00707 inline bool 00708 operator!=(const multimap<_Key, _Tp, _Compare, _Alloc>& __x, 00709 const multimap<_Key, _Tp, _Compare, _Alloc>& __y) 00710 { return !(__x == __y); } 00711 00712 /// Based on operator< 00713 template<typename _Key, typename _Tp, typename _Compare, typename _Alloc> 00714 inline bool 00715 operator>(const multimap<_Key, _Tp, _Compare, _Alloc>& __x, 00716 const multimap<_Key, _Tp, _Compare, _Alloc>& __y) 00717 { return __y < __x; } 00718 00719 /// Based on operator< 00720 template<typename _Key, typename _Tp, typename _Compare, typename _Alloc> 00721 inline bool 00722 operator<=(const multimap<_Key, _Tp, _Compare, _Alloc>& __x, 00723 const multimap<_Key, _Tp, _Compare, _Alloc>& __y) 00724 { return !(__y < __x); } 00725 00726 /// Based on operator< 00727 template<typename _Key, typename _Tp, typename _Compare, typename _Alloc> 00728 inline bool 00729 operator>=(const multimap<_Key, _Tp, _Compare, _Alloc>& __x, 00730 const multimap<_Key, _Tp, _Compare, _Alloc>& __y) 00731 { return !(__x < __y); } 00732 00733 /// See std::multimap::swap(). 00734 template<typename _Key, typename _Tp, typename _Compare, typename _Alloc> 00735 inline void 00736 swap(multimap<_Key, _Tp, _Compare, _Alloc>& __x, 00737 multimap<_Key, _Tp, _Compare, _Alloc>& __y) 00738 { __x.swap(__y); } 00739 00740 #ifdef __GXX_EXPERIMENTAL_CXX0X__ 00741 template<typename _Key, typename _Tp, typename _Compare, typename _Alloc> 00742 inline void 00743 swap(multimap<_Key, _Tp, _Compare, _Alloc>&& __x, 00744 multimap<_Key, _Tp, _Compare, _Alloc>& __y) 00745 { __x.swap(__y); } 00746 00747 template<typename _Key, typename _Tp, typename _Compare, typename _Alloc> 00748 inline void 00749 swap(multimap<_Key, _Tp, _Compare, _Alloc>& __x, 00750 multimap<_Key, _Tp, _Compare, _Alloc>&& __y) 00751 { __x.swap(__y); } 00752 #endif 00753 00754 _GLIBCXX_END_NESTED_NAMESPACE 00755 00756 #endif /* _STL_MULTIMAP_H */