[ previous ] [ Contents ] [ 1 ] [ 2 ] [ 3 ] [ 4 ] [ 5 ] [ 6 ] [ 7 ] [ 8 ] [ 9 ] [ 10 ] [ 11 ] [ 12 ] [ next ]

Installing Debian GNU/Linux 3.0 For SPARC
Chapter 2 - System Requirements


This section contains information about what hardware you need to get started with Debian. You will also find links to further information about hardware supported by GNU and Linux.


2.1 Supported Hardware

Debian does not impose hardware requirements beyond the requirements of the Linux kernel and the GNU tool-sets. Therefore, any architecture or platform to which the Linux kernel, libc, gcc, etc. have been ported, and for which a Debian port exists, can run Debian. Please refer to the Ports pages at http://www.debian.org/ports/sparc/ for more details on sparc architecture systems which have been tested with Debian.

Rather than attempting to describe all the different hardware configurations which are supported for SPARC, this section contains general information and pointers to where additional information can be found.


2.1.1 Supported Architectures

Debian 3.0 supports eleven major architectures and several variations of each architecture known as 'flavors'.

     Architecture         | Debian Designation / Flavor 
     ---------------------+----------------------------
     Intel x86-based      | i386
                          |   - vanilla
                          |   - idepci
                          |   - compact
                          |   - bf2.4 (experimental)
                          | 
     Motorola 680x0:      | m68k
       - Atari            |   - atari
       - Amiga            |   - amiga
       - 68k Macintosh    |   - mac
       - VME              |   - bvme6000
                          |   - mvme147
                          |   - mvme16x
                          | 
     DEC Alpha            | alpha
                          |   - generic
                          |   - jensen
                          |   - nautilus
                          | 
     Sun SPARC            | sparc
                          |   - sun4cdm
                          |   - sun4u
                          |   
     ARM and StrongARM    | arm
                          |   - netwinder
                          |   - riscpc
                          |   - shark
                          |   - lart
                          | 
     IBM/Motorola PowerPC | powerpc
       - CHRP             |   - chrp
       - PowerMac         |   - powermac, new-powermac
       - PReP             |   - prep
       - APUS             |   - apus
                          | 
     HP PA-RISC           | hppa
       - PA-RISC 1.1      |   - 32
       - PA-RISC 2.0      |   - 64
                          |
     Intel ia64-based     | ia64
                          |
     MIPS (big endian)    | mips
       - SGI Indy/I2      |  - r4k-ip22
                          | 
     MIPS (little endian) | mipsel
       - DEC Decstation   |  - r4k-kn04
                          |  - r3k-kn02
                          | 
     IBM S/390            | s390
                          |  - tape
                          |  - vmrdr
                          |
     ---------------------+----------------------------

This document covers installation for the sparc architecture. If you are looking for information on any of the other Debian-supported architectures take a look at the Debian-Ports pages.


2.1.2 CPU, Main Boards, and Video Support

Currently the sparc port supports several types of Sparc systems. The most common identifiers for Sparc systems are sun4, sun4c, sun4m, sun4d and sun4u. Currently we do not support very old sun4 hardware. However, the other systems are supported. Sun4d has been tested the least of these, so expect possible problems with regard to the kernel stability. Sun4c and Sun4m, the most common of the older Sparc hardware, includes such systems as SparcStation 1, 1+, IPC, IPX and the SparcStation LX, 5, 10, and 20, respectively. The UltraSPARC class systems fall under the sun4u identifier, and are supported using the sun4u set of install images. Some systems that fall under these supported identifiers are known to not be supported. Known unsupported systems are the AP1000 multicomputer and the Tadpole Sparcbook 1. See the Linux for SPARCProcessors FAQ for complete information.


2.1.2.1 Memory Configuration

Some older Sun workstations, notably the Sun IPX and Sun IPC have memory banks located at fixed locations in physical memory. Thus if the banks are not filled gaps will exist in the physical memory space. The Linux installation requires a contiguous memory block into which to load the kernel and the initial RAMdisk. If this is not available a `Data Access Exception' will result.

Thus you must configure the memory so that the lowest memory block is contiguous for at least 8Mb. In the IPX and IPC cited above, memory banks are mapped in at 16Mb boundaries. In effect this means that you must have a sufficiently large SIMM in bank zero to hold the kernel and RAMdisk. In this case 4Mb is not sufficient.

Example: In a Sun IPX you have a 16Mb SIMM and a 4Mb SIMM. There are four SIMM banks (0,1,2,3). [Bank zero is that furthest away from the SBUS connectors]. You must therefore install the 16Mb SIMM in bank 0; it is then recommended to install the 4Mb SIMM in bank 2.


2.1.2.2 Graphics Configuration

Especially in the case of older Sun workstations, it is very common for there to be an onboard framebuffer which has been superseded (for example the bwtwo on a sun IPC), and an SBUS card containing a later probably accelerated buffer is then plugged in to an SBUS slot. Under Solaris/SunOS this causes no problems because both cards are initialised.

However with Linux this can cause a problem, in that the boot PROM monitor may display its output on this additional card; however the linux kernel boot messages may then be directed to the original on board framebuffer, leaving no error messages on the screen, with the machine apparently stuck loading the RAMdisk.

To avoid this problem, connect the monitor (if required) to the video card in the lowest numbered SBUS slot (on motherboard card counts as below external slots). Alternatively it is possible to use a serial console.


2.1.2.3 Graphics Card

Debian's support for graphical interfaces is determined by the underlying support found in XFree86's X11 system. The newer AGP video slots are actually a modification on the PCI specification, and most AGP video cards work under XFree86. Details on supported graphics buses, cards, monitors, and pointing devices can be found at http://www.xfree86.org/. Debian 3.0 ships with X11 revision 4.1.0.


2.1.3 Multiple Processors

Multi-processor support — also called ``symmetric multi-processing'' or SMP — is supported for this architecture. However, the standard Debian 3.0 kernel image does not support SMP. This should not prevent installation, since the standard, non-SMP kernel should boot on SMP systems; the kernel will simply use the first CPU.

In order to take advantage of multiple processors, you'll have to replace the standard Debian kernel. You can find a discussion of how to do this in Compiling a New Kernel, Section 9.5. At this time (kernel version 2.2.20) the way you enable SMP is to select ``symmetric multi-processing'' in the ``General'' section of the kernel config.


2.2 Installation Media

In many cases, you'll have to do your first boot from floppy disks, using the rescue floppy. Generally, all you will need is a high-density (1440 kilobytes) 3.5 inch floppy drive.

CD-ROM based installation is supported for some architectures. On machines which support bootable CD-ROMs, you should be able to do a completely floppy-less installation. Even if your system doesn't support booting from a CD-ROM, you can use the CD-ROM in conjunction with the other techniques to install your system, once you've booted up by other means; see Booting from a CD-ROM, Section 5.2.

Installation system booting from a hard disk is another option for many architectures. Although the SPARC does not allow booting from SunOS (Solaris), you can install from a SunOS partiton (UFS slices).

You can also boot your system over the network. Diskless installation, using network booting from a local area network and NFS-mounting of all local filesystems, is another option — you'll probably need at least 16MB of RAM for a diskless installation. After the operating system kernel is installed, you can install the rest of your system via any sort of network connection (including PPP after installation of the base system), via FTP, HTTP, or NFS.


2.2.1 Supported Storage Systems

The Debian boot disks contain a kernel which is built to maximize the number of systems it runs on. Unfortunately, this makes for a larger kernel, which includes many drivers that won't be used for your machine (see Compiling a New Kernel, Section 9.5 to learn how to build your own kernel). Support for the widest possible range of devices is desirable in general, to ensure that Debian can be installed on the widest array of hardware.

Any storage system supported by the Linux kernel is also supported by the boot system. The following SCSI drivers are supported in the default kernel:

IDE systems (such as the UltraSPARC 5) are also supported. See Linux for SPARC Processors FAQ for more information on SPARC hardware supported by the Linux kernel.


2.3 Memory and Disk Space Requirements

You must have at least 12MB of memory and 110MB of hard disk space. For a minimal console-based system (all standard packages), 250MB is required. If you want to install a reasonable amount of software, including the X Window System, and some development programs and libraries, you'll need at least 400MB. For a more or less complete installation, you'll need around 800MB. To install everything available in Debian, you'll probably need around 2 GB. Actually, installing everything doesn't even make sense, since some packages conflict with others.


2.4 Network Connectivity Hardware

The following network interface cards (NICs) are supported from the bootable kernel directly:

The following network interface cards are supported as modules. They can be enabled once the drivers are installed during the setup. However, due to the magic of OpenPROM, you still should be able to boot from these devices:


2.5 Peripherals and Other Hardware

Linux supports a large variety of hardware devices such as mice, printers, scanners, PCMCIA and USB devices. However, most of these devices are not required while installing the system. This section contains information about peripherals specifically not supported by the installation system, even though they may be supported by Linux.


2.6 Purchasing Hardware Specifically for GNU/Linux

There are several vendors, who ship systems with Debian or other distributions of GNU/Linux pre-installed. You might pay more for the privilege, but it does buy a level of peace of mind, since you can be sure that the hardware is well-supported by GNU/Linux.

Whether or not you are purchasing a system with Linux bundled, or even a used system, it is still important to check that your hardware is supported by the Linux kernel. Check if your hardware is listed in the references found above. Let your salesperson (if any) know that you're shopping for a Linux system. Support Linux-friendly hardware vendors.


2.6.1 Avoid Proprietary or Closed Hardware

Some hardware manufacturers simply won't tell us how to write drivers for their hardware. Others won't allow us access to the documentation without a non-disclosure agreement that would prevent us from releasing the Linux source code.

Since we haven't been granted access to the documentation on these devices, they simply won't work under Linux. You can help by asking the manufacturers of such hardware to release the documentation. If enough people ask, they will realize that the free software community is an important market.


[ previous ] [ Contents ] [ 1 ] [ 2 ] [ 3 ] [ 4 ] [ 5 ] [ 6 ] [ 7 ] [ 8 ] [ 9 ] [ 10 ] [ 11 ] [ 12 ] [ next ]

Installing Debian GNU/Linux 3.0 For SPARC

version 3.0.23, 15 May, 2002
Bruce Perens
Sven Rudolph
Igor Grobman
James Treacy
Adam Di Carlo