
Barcode Writer in Pure Postscript

Terry Burton <tez@terryburton.co.uk>

October 21, 2006

Abstract

This document describes the implementation of the Barcode Writer in Pure
Postscript project, explains by example how to use this to generate your own bar-
codes, and provides a simple reference to using the symbologies that it supports.

Note: Despite the date on this document, the information contained herein is somewhat
out of date. A much more thorough and up-to-date reference to this project is avail-
able in the wiki, http://www.terryburton.co.uk/barcodewriter/wiki/. This wiki provides
a collaborative approach to documentation that allows users to add and edit content
collectively.

i

Contents

1 Introduction 1

2 Code Commentary 2
2.1 The Barcode Data Structure . 2

2.2 An Encoder . 3

2.3 The Renderer . 5

2.4 Notes Regarding Coding Style . 8

3 Resources and Examples 9
3.1 Language Specific APIs . 9

3.2 Front Ends . 9

3.3 Installing the Barcode Generation Capability into a Printer’s Virtual
Machine . 10

3.4 Hints for Generating Precisely the Required Symbol 11

3.5 Printing in Perl . 12

4 Supported Symbologies 13
4.1 EAN-13 . 13

4.2 EAN-8 . 13

4.3 UPC-A . 14

4.4 UPC-E . 14

4.5 EAN-5 . 15

4.6 EAN-2 . 15

4.7 ISBN . 16

4.8 Code-39 . 16

4.9 Code-128 and UCC/EAN-128 . 17

4.10 Rationalized Codabar . 17

4.11 Interleaved 2 of 5 and ITF-14 . 18

4.12 Code 2 of 5 . 18

4.13 Postnet . 19

4.14 Royal Mail . 19

ii

4.15 MSI . 20

4.16 Plessey . 20

5 License 21

iii

1 Introduction

Barcode Writer in Pure Postscript is an award-winning open source barcode maker, as
used by NASA, that facilitates the printing of all major barcode symbologies entirely
within level 2 PostScript, ideal for variable data printing. The complete process of
generating printed barcodes is performed entirely within the printer (or print system) so
that it is no longer the responsibility of your application or a library. There is no need
for any barcode fonts and the flexibility offered by direct PostScript means you can
avoid re-implementing barcode generator code, or migrating to new libraries, whenever
your project language needs change.

To make it as easy as possible to incorporate this project into your own systems,
whether they be freely available or proprietary, it is licensed under the permissive
MIT/X-Consortium License given in section 5.

The project homepage is at http://www.terryburton.co.uk/barcodewriter.

This is the main resource for the project providing the latest downloads of code and
documentation, as well as access to the support and development mailing list.

Acknowledgements

The author wishes to take this opportunity to thank the growing community of vol-
unteers that have helped to develop, test and document this project. Most especially
Michael Landers and Ross McFarland for freely donating their encoder implementa-
tions early in the life of the project.

Also, special appreciation is extended to the developers that have created the front-ends
necessary to make the code valuable to ordinary computer users, especially Petr Vaněk,
Dominik Seichter and Herbert Voß.

1

2 Code Commentary

This commentary assumes familiarity with the PostScript language1.

The code is split cleanly into two types of procedure:

The encoders Each of these represents a barcode symbology2, e.g. EAN-13 or Code-
128. It takes a string containing the barcode data and a string containing a list of
options that modify the output of the encoder. It generates a structured represen-
tation of the barcode and its text for the symbology, including the calculation of
check digits where necessary.

The renderer This takes the output of an encoder and generates a visual representa-
tion of the barcode.

This means that all barcodes can be generated simply in a similar manner:

(78858101497) (includetext height=0.6) upca barcode
(0123456789) (includecheck) interleaved2of5 barcode

2.1 The Barcode Data Structure

The following table describes the structured representation of a barcode that is passed
by an encoder to the renderer as a dictionary when the PostScript is executed.

Element Key Value
Space bar succession sbs Array containing the widths, in points, of each

bar and space, starting with the leftmost bar.
Bar height succession bhs Array containing the height of each bar in

inches, starting with the leftmost bar.
Bar base succession bbs Array containing the offset of the base of each

bar in inches, starting with the leftmost bar.
Human readable text txt Array of arrays that contain the character, po-

sition, height, font and scale factor (font size),
in points, for each of the visible text charac-
ters.

Renderer options opt String containing the user-defined renderer op-
tions.

Other keys and values may be contained in this structure that override the render de-
faults with encoder specific defaults.

1The PostScript Language Tutorial and Cookbook (a.k.a. the Blue Book), which is freely available online,
serves as both a useful tutorial and reference manual to the language.

2By symbology we mean an accepted standard for representation of data as a barcode

2

2.2 An Encoder

The procedure labelled code2of5 is a simple example of an encoder, which we will
now consider. Its purpose is to accept as input a string containing the barcode contents
and a string containing a list of options, and to process these in a way that is specific
to this encoder, and finally to output an instance of the dictionary-based data struc-
ture described in section 2.1 that represents the barcode contents in the Code 2 of 5
symbology.

As with all of the encoders, the input string is assumed to be valid for the corresponding
symbology, otherwise the behaviour is undefined.

The variables that we use in this procedure are confined to local scope by declaring the
procedure as follows:

/code2of5 {

0 begin

...

end

} bind def
/code2of5 load 0 1 dict put

We start by immediately reading the contents strings that are passed as arguments to
this procedure by the user. We duplicate the options string because it is later passed
unamended to the renderer.

/options exch def
/useropts options def
/barcode exch def

We initialise a few default variables. Those variables corresponding to options that can
be enabled with the options argument are initially set to false.

/includetext false def
/textfont /Courier def
/textsize 10 def
/textpos -7 def
/height 1 def

The options string is tokenised with each successive token defining either a name value
pair which we instantiate or a lone variable that we define as true, allowing us to over-
ride the given default variables given above.

3

options {
token false eq {exit} if dup length string cvs (=) search
true eq {cvlit exch pop exch def} {cvlit true def} ifelse

} loop

Since any user given options create variables that are strings we need to convert them
back to their intended types.

/textfont textfont cvlit def
/textsize textsize cvr def
/textpos textpos cvr def
/height height cvr def

We then create an array of string encodings for each of the available characters which
we then declare in another string. This information can be derived from careful reading
of the relevant specification, although this is often surprisingly difficult to obtain.

/encs
[(1111313111) (3111111131) (1131111131) (3131111111)

(1111311131) (3111311111) (1131311111) (1111113131)
(3111113111) (1131113111) (313111) (311131)

] def

/barchars (0123456789) def

We now store the length of the content string and calculate the total number of bars and
spaces in the resulting barcode. We initialise a string of size dependant on this length
into which we will build the space bar succession. Similarly, we create an array into
which we will add the human readable text information.

/barlen barcode length def
/sbs barlen 10 mul 12 add string def
/txt barlen array def

We now begin to populate the space bar succession by adding the encoding of the start
character to the beginning.

sbs 0 encs 10 get putinterval

We now enter the main loop which iterates over the content string from start to finish,
looking up the encoding for each character, adding this to the space bar succession.

It is important to understand how the encoding for a given character is derived. Firstly,
given a character, we find its position in the string of all available characters. We then

4

use this position to index the array of character encodings to obtain the encoding for the
given character, which is added to the space/bar succession. Likewise, the character is
added to the array of human readable text along with positioning and font information.

0 1 barlen 1 sub {
/i exch def
barcode i 1 getinterval barchars exch search
pop
length /indx exch def
pop pop
/enc encs indx get def
sbs i 10 mul 6 add enc putinterval
txt i [barcode i 1 getinterval i 14 mul 10 add -7

textfont textsize] put
} for

The encoding for the end character is obtained and added to the end of the space bar
succession.

sbs barlen 10 mul 6 add encs 11 get putinterval

Finally we prepare to push a dictionary containing the space bar succession (and any
additional information defined in section 2.1) that will be passed to the renderer.

/retval 1 dict def
retval (sbs) [sbs {48 sub} forall] put
retval (bhs) [sbs length 1 add 2 idiv {height} repeat] put
retval (bbs) [sbs length 1 add 2 idiv {0} repeat] put
includetext {

retval (txt) txt put
} if
retval (opt) useropts put
retval

2.3 The Renderer

This description is out of date.

The procedure labelled barcode is known as the renderer, which we now consider. Its
purpose is to accept as input an instance of the dictionary-based data structure described
in section 2.1 that represents a barcode in some arbitrary symbology and produce a
visual rendering of this at the current point.

The variables that we use in this procedure are confined to local scope by declaring the
procedure as follows:

5

/barcode {

0 begin

...

end

} bind def
/barcode load 0 1 dict put

We then immediately read the dictionary-based data structure which is passed as a
single argument to this procedure by an encoder, from which we extract the space bar
succession, bar height succession and bar base succession.

/args exch def
/sbs args (sbs) get def
/bhs args (bhs) get def
/bbs args (bbs) get def
/renderopts args (opt) get def

We attempt to extract from the dictionary the array containing the information about
human readable text. However, this may not exist in the dictionary in which case we
create a default empty array.

args (txt) known {
/txt args (txt) get def

} {
/txt [] def

} ifelse

Just as with the encoders, we read and tokenise the supplied options allowing specific
rendering options to be overridden.

/inkspread 0.15 def
renderopts {

token false eq {exit} if dup length string cvs (=) search
true eq {cvlit exch pop exch def} {cvlit true def} ifelse

} loop
/inkspread inkspread cvr def

We have extracted or derived all of the necessary information from the input, and now
use the space bar succession, bar height succession and bar base succession in calcu-
lations that create a single array containing elements that give coordinates for each of
the bars in the barcode.

6

We start by creating a bars array that is half the length of the space bar succession. We
build this by repeatedly adding array elements that contain the height, x-coordinate,
y-coordinate and width of single bars. The height and y-coordinates are read from the
bar height succession and the bar base succession, respectively, whilst the x-coordinate
and the width are made from a calculation of the total indent, based on the space bar
succession and a compensating factor that accounts for ink spread.

/bars sbs length 1 add 2 idiv array def
/x 0.00 def
0 1 sbs length 1 sub {

/i exch def
/d sbs i get 48 sub def
i 2 mod 0 eq {

/h bhs i 2 idiv get 72 mul def
/c d 2 div x add def
/y bbs i 2 idiv get 72 mul def
/w d inkspread sub def
bars i 2 idiv [h c y w] put

} if
/x x d add def

} for

Finally, we perform the actual rendering in two phases. Firstly we use the contents of
the bars array that we just built to render each of the bars, and secondly we use the
contents of the text array extracted from the input argument to render the text. We
make an efficiency saving here by not performing loading and rescaling of a font if the
scale factor for the font size is 0. The graphics state is preserved across calls to this
procedure to prevent unexpected interference with the users environment.

gsave

bars {
{} forall
setlinewidth moveto 0 exch rlineto stroke

} forall

txt {
{} forall
dup 0 ne {exch findfont exch scalefont setfont}
{pop pop}
ifelse
moveto show

} forall

grestore

7

2.4 Notes Regarding Coding Style

PostScript programming veterans are encouraged to remember that the majority of peo-
ple who read the code are likely to have little, if any, prior knowledge of the language.

To encourage development, the code has been written with these goals in mind:

- That it be easy to use and to comprehend

- That it be easy to modify and enhance

To this end the following points should be observed for all new code submissions:

- New encoders should be based on the code of a similar existing encoder

- Include comments where these clarify the operations involved, particular where
something unexpected happens

- Prefer simplicity to efficency and clarity to obfuscation, except where this will
be a problem

8

3 Resources and Examples

There are several ways of using the PostScript within your own projects.

Many example uses of the code for various languages and platforms can be downloaded
from the code repository at http://www.terryburton.co.uk/barcodewriter/files/repository/

3.1 Language Specific APIs

No language specific APIs exist yet. If you have experience writing API specifications
and would like to help create an API design for the project then contact the author.

3.2 Front Ends

The following is a list of the front ends available for the project.

Web based generator http://www.terryburton.co.uk/barcodewriter/generator/

Scribus Scribus versions 1.3 and later come with a Barcode Maker plugin based on
this project.
http://www.scribus.org.uk

KBarcode KBarcode versions 2 and later make use of this project.
http://www.kbarcode.net

pst-barcode pst-barcode is a PSTricks package for LATEX.
http://www.ctan.org/tex-archive/graphics/pstricks/contrib/pst-barcode/

9

3.3 Installing the Barcode Generation Capability into a Printer’s
Virtual Machine

Most genuine PostScript printers allow procedures to be defined such that they persist
across different jobs through the use of the exitserver command. If your printer
supports this then you will be able to print the main code containing the definitons of
all the encoders and the renderer once, e.g. soon after the device is turned on, and later
omit these definitons from each of the barcode documents that you print.

To install the barcode generation capabilities into the virtual machine of a PostScript
printer you need to uncomment a line near the top of the code so that it reads:

serverdict begin 0 exitserver

Once this code is printed the procedural definitions for the encoders and the renderer
will remain defined across all jobs until the device is reset either by power-cycling or
with the following code:

serverdict begin 0 exitserver systemdict /quit get exec

10

3.4 Hints for Generating Precisely the Required Symbol

To create a barcode to a required width and height, without stretching the human read-
able text, perform the following steps.

Create a basic symbol by choosing the relevant data and text options for the corre-
sponding encoder, and position this using translate such that the bottom-left corner
of the bars is in the required location:

gsave
430 750 translate
(977147396801) (includetext) ean13 barcode
grestore

Find the uniform scale factor (same value for x and y) that makes your output of the
required width:

gsave
430 750 translate
1.3 1.3 scale % <-- Add a line like this
(977147396801) (includetext) ean13 barcode
grestore

Add a height option that adjusts the bar height appropriately (taking the scaling into
account):

gsave
430 750 translate
1.3 1.3 scale
% Added height=0.8 option to adjust height
(977147396801) (includetext height=0.8) ean13 barcode
grestore

The result should now be of the intended dimensions at the desired location with prop-
erly scaled text. You can now add any additional options to customise the symbol.

11

3.5 Printing in Perl

This example will print a page of EAN-13s ranging between two given values when
called from a shell like this:

$./ean13s.pl 978186074271 978186074292 | lpr

The contents of the script ean13s.pl is as follows:

#!/usr/bin/perl -w
use strict;

die ’Requires two arguments’ if (@ARGV!=2);

open(PS,’barcode.ps’) || die ’File not found’;
$_=join(’’,<PS>);
close(PS);

print "%!PS-Adobe-2.0\n";

m/
%\ --BEGIN\ TEMPLATE--
(.*)
%\ --END\ TEMPLATE--
/sx || die ’Unable to parse out the template’;

print $1;

for (my $i=$ARGV[0], my $j=0; $i<$ARGV[1]; $i++, $j++) {
my $x=100+150*(int($j/7));
my $y=100+100*($j%7);
print "gsave\n";
print "$x $y translate\n";
print "($i) (includetext) ean13 barcode\n";
print "grestore\n";

}

print "showpage\n";

12

4 Supported Symbologies

The following section shows the symbologies that are supported by the encoders, in-
cluding the available features for each. This list may not be up-to-date. If it does not
contain any of the formats or features that you require then check the project source
code or try the support mailing list.

4.1 EAN-13

Data 12 or 13 digits

Options Option Feature
includetext Enable human readable text

Notes If just 12 digits are entered then the check digit is calculated automatically

9 781860 742712
Figure 1: (9781860742712) (includetext guardwhitespace) ean13 barcode

4.2 EAN-8

Data 8 digits

Options Option Feature
includetext Enable human readable text

1234 5678
Figure 2: (12345678) (includetext guardwhitespace height=0.6) ean8
barcode

13

4.3 UPC-A

Data 11 or 12 digits

Options Option Feature
includetext Enable human readable text

Notes If just 11 digits are entered then the check digit is calculated automatically

7 88581 01497 4
Figure 3: (78858101497) (includetext) upca barcode

4.4 UPC-E

Data 7 or 8 digits

Options Option Feature
includetext Enable human readable text

Notes If just 7 digits are entered then the check digit is calculated automatically

0 123456 5
Figure 4: (0123456) (includetext) upce barcode

14

4.5 EAN-5

Data 5 digits

Options Option Feature
includetext Enable human readable text

9 0 2 0 0

Figure 5: (90200) (includetext guardwhitespace) ean5 barcode

4.6 EAN-2

Data 2 digits

Options Option Feature
includetext Enable human readable text

3 8

Figure 6: (38) (includetext guardwhitespace) ean2 barcode

15

4.7 ISBN

Data 9 or 10 digits seperated appropriately with dashes

Options Option Feature
includetext Enable human readable text

Notes If just 9 digits are entered then the human readable ISBN check digit is calcu-
lated automatically

9 781588 801494

ISBN 1-58880-149-7

Figure 7: (1-58880-149) (includetext) isbn barcode

4.8 Code-39

Data Variable number of characters, digits and any of the symbols -. *$/+%.

Options
Option Feature
includecheck Enable check digit
includetext Enable human readable text
includecheckintext Make check digit visible in text

* C O D E - 3 9 *

Figure 8: (CODE-39) (includecheck includetext) code39 barcode

16

4.9 Code-128 and UCC/EAN-128

Data Variable number of ASCII characters and special funtion symbols, starting with
the approriate start character for the initial character set. UCC/EAN-128s must
have a manditory FNC 1 symbol immediately following the start character.

Options
Option Feature
includetext Enable human readable text
includecheckintext Make check digit visible in text

Notes Any non-printable character can be entered via its escaped ordinal value, for
example ˆ070 for ACK and ˆ102 for FNC 1. Since a caret symbol serves as an
escape character it must be escaped as ˆ062 if used in the data. The check
character is always added automatically.

 C o u n t 1234 !

Figure 9: (ˆ104ˆ102Countˆ0991234ˆ101!) (includetext) code128 barcode

4.10 Rationalized Codabar

Data Variable number of digits and any of the symbols -$:/.+ABCD.

Options
Option Feature
includecheck Enable check digit
includetext Enable human readable text
includecheckintext Make check digit visible in text

0 1 2 3 4 5 6 7 8 9

Figure 10: (0123456789) (includetext) rationalizedCodabar barcode

17

4.11 Interleaved 2 of 5 and ITF-14

Data Variable number of digits. An ITF-14 is 14 characters and does not have a check
digit.

Options
Option Feature
includecheck Enable check digit
includetext Enable human readable text
includecheckintext Make check digit visible in text

Notes The data may be automatically prefixed with 0 to make the data, including op-
tional check digit, of even length.

Figure 11: (05012345678900) (includecheck height=0.7) interleaved2of5
barcode

4.12 Code 2 of 5

Data Variable number of digits

Options Option Feature
includetext Enable human readable text

0 1 2 3 4 5 6 7 8 9

Figure 12: (0123456789) (includetext textpos=75 textfont=Helvetica
textsize=16) code2of5 barcode

18

4.13 Postnet

Data Variable number digits

Options
Option Feature
includetext Enable human readable text
includecheckintext Make the check digit visible in the text

Notes Check digit is always added automatically

0 1 2 3 4 5 6 7
Figure 13: (01234567) (includetext textpos=-10 textfont=Arial
textsize=10) postnet barcode

4.14 Royal Mail

Data Variable number digits and capital letters

Options
Option Feature
includetext Enable human readable text
includecheckintext Make the check digit visible in the text

Notes Check digit is always added automatically

L E 2 8 H S 9 Z

Figure 14: (LE28HS9Z) (includetext) royalmail barcode

19

4.15 MSI

Data Variable number digits

Options
Option Feature
includecheck Enable check digit
includetext Enable human readable text
includecheckintext Make check digit visible in the text

0 1 2 3 4 5 6 7 8 9

Figure 15: (0123456789) (includecheck includetext) msi barcode

4.16 Plessey

Data Variable number of hexadecimal characters

Options
Option Feature
includetext Enable human readable text
includecheckintext Make the check digits visible in the text

Notes Check digits are always added automatically.

0 1 2 3 4 5 6 7 8 9 A B C D E F

Figure 16: (012345ABCDEF) (includetext) plessey barcode

20

5 License

Copyright c©2004 Terry Burton

Permission is hereby granted, free of charge, to any person obtaining a copy of this
software and associated documentation files (the ”Software”), to deal in the Software
without restriction, including without limitation the rights to use, copy, modify, merge,
publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons
to whom the Software is furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all copies
or substantial portions of the Software.

The software is provided ”as is”, without warranty of any kind, express or implied,
including but not limited to the warranties of merchantability, fitness for a particular
purpose and noninfringement. In no event shall the authors or copyright holders be
liable for any claim, damages or other liability, whether in an action of contract, tort or
otherwise, arising from, out of or in connection with the software or the use or other
dealings in the software.

21

